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Abstract

We describe a model of natural language un-
derstanding based on the notion of propagating
constraints in a semantic memory. Thizs model
contains a massively-parallel memory-network in
which constraint graphs that represent syntactic
and other constraints that are associated with the
nodes that triggered activations are propagated.
The propagated constraint graphs of complement
nodes that collide with the constramt graphs pos-
tulated by the head nodes are unified to perform
constraint applications.  This mechanism han-
dles inguistic phenomena such as case, agreement,
binding and control in a principled manner in ef-
fect equivalent to the manner that they are han-
dled in modern linguistic theories.

Motivation

The so called ‘direct memory access’ (or memory-
based) paradigm of natural language recognition seems
to have established itself as an Important approach
to natural language. Originated by Quillian ([Quil-
lian, 1969]), this model of natural language processing
views natural language understanding as the activity
of identifying the input utterance with existing mem-
ory structures. While these memory structures have
taken various forms depending upon underlying the-
oretical approaches (such as MOPs of [Riesbeck and
Martin, 1985] and Cases in [Martin, 1989}), the under-
lying control structure has remained shared, namely,
spreading activation and marker passing. The advan-
tage of this control structure is that since spreading
activation takes place directly in the memory network,
direct memory-based inferential processing can be em-
ployed at any point of recognition. A large number of
systems have taken advantage of this control structure
in order to perform recognition and inference directly
on a semantic memory. One well known weakness of
this approach is its inability to handle complex syn-
tactic constraints. Since the memory network repre-
sents the hierarchical organization of conceptual rela-
tions and packaging of thematic and experiential mem-

ory units, adequate representation of syntactic con-
straints has been very difficult, if not impossible. It
is because syntactic counstraints are often configura-
tional and are assigned based upon particular struc-
tural patterns of the constituent buildup at the time
of utterance. I'or example, a syntactic case of a par-
ticular noun phrase is dynamically determined at the
time of the utterance based upon the particular syn-
tactic configuration and is essentially impossible to
capture a priori in the semantic network (otherwise
we will have to specify infinitely many sentential pat-
terns as well as many redundant subcategories of con-
cepts based upon case varicty simply to capture the
case agreement phenomenon). Similarly a recognition
of Sue said thal Mary ran under the memory-based
paradigm would require instantiation of two sequences
of concepts in memory [*PERSON *MTRANS-word that
*acTioN] and [*PERSON *RUN] (i.e., a typical senten-
tial recognition methodology currently employed un-
der this paradigm using patterns of concepts). The
first sequence is probably attached to a root node such
as *MTRANS-EVENT and the second sequence is at-
tached to *RUN-ACTION which is a subclass of *ac-
TION. The last element of the fifst sequence *ACTION
will be activated by the recognition of any subclass
of *acTioN including *RUN-ACTION, *SLEEP-ACTION,
etc.. However, there is no way to ensure that if the
*MTRANS-word is said, the set of entities that caused
the activation of *AcTION contain {be headed by) a
finite verb (unless we create a possibly infinite num-
ber of concepts for different combinations of syntac-
tic features such as *FINITE-FORM-RUNNING-ACTION-
TAKING-NOMINATIVE-SUBJECT). Thus, it is essentially
umpossible to capture the grammaticality of John said
Mary runs and the ungrammaticality of John said
Mary run (or John said Mary to run) within the con-
straints capturable inside the semantic memory net-
work. Another well known syntactic phenomenon that
1s essentially uncapturable within the semantic net-
work methodology is the so called obligatory conirol
phenomenon in which a subject (or object) of the ex-
ternal clause controls the unexpressed subject of the in-
ternal clause. For example, in John persuaded Mary lo



give Sandy sushi, the subject of gree 1s unexpressed but
15 ‘controlled’ to he the object of the external clause,
i.e., Mary. This is called object control and in order to
handle this, a configurational {formulation of the syn-
tactic constraints will be needed, which is non-trivial
in a straightforward semantic network.?

Other problemalic constraints include long-distance
dependency In which the dependency relation between
the two noun phrase positions is postulated for an un-
bounded length and depth of the syntactic tree config-
uration. Some binding of anaphors, such as the binding
of reflexive pronouuns in English, also requires configu-
rational constraint processing. Thus, many syntactic
phenomena require constraint processing based upon
syntactic constituents and configurations that are dy-
namically created during the recognition and a pri-
ort formulation of such constraints within the semantic
memory network is very difficult, if not impossible.

Constraint Propagation in Memory

The central notion of the proposed model is the prop-
agation of constraintsin the semantic memory net-
work. This is in contrast to past models of semantic
memory-based natural language recognition in which
activations and pointers to sources ol activations (i.e.,
markers) are propagated in the memory network. In-
stead of propagating markings on memory nodes, we
explicitly propagate constraints. As a representational
scheme for capturing constraints to be propagated, we
find directed graphs to be appropriate. Tt is because
their expressivity has been well supported by linguists
([Bresnan and Kaplan, 1982}, [Pollard and Sag, 1987],
etc.) and the operations on them (i.e., graph uni-
fication) have been extensively researched®. In fact
the problematic linguistic phenomena for the memory-
based paradigm such as agreement, obligatory conirol,
and long-distance dependency have all been captured in
the unification-based grammar theories in which graph
representation and graph unification are assumed to be
the tool for capturing the constraints required for han-
dling these phenomena. Thus, we propose a model of
natural langnage recognition based upon propagation
of constraints in a semantic memory network in which
constraints are captured using directed graphs. We
will call the proposed semantic network with capacity
to propagate graphs Graph-based Consiraint Propaga-

'n fact, the DM A systems that handle these phenomena
rely on either prestored functional constraint applications
specifically prepared for particular sentential constructions
(such as [Tomabechi and Levin, 1989]) or on prestored
(hard-wired) relations between conceptnal entities for par-
ticular sentential constructions {such as [Kitano, 1990]). In
either case, formulation of prestored relational constraints
are at best ad hoc and no generality is guaranteed.

2Such as [Pereira, 1985), [Karttunen, 1986}, [Kasper,
1987], [Wroblewski, 1987], and [Tomabechi, 1991].

tion Network or GCPN in this paper. The graphs®
propagaled i the GCPN may point to any location
in the network and may contain complex paths includ-
ing convergent arcs and cycles. The existential nature
of the graphs is diflerent from thal of the constraint
propagation network itself! in the sense that the se-
mantic memory network constitnies (following the tra-
dition since [Quillian, 1966]) the hierarchical organiza-
tion of concepts that represents a semantic memory
and the constraint graphs represent mostly syntactic
constraints such as head features and configurational
constraints which do not belong to the semantic mem-
ory.

The expressivity of the graph-based constraint prop-
agation scheme is significantly greater than that of
traditional memory-based schemes and their exten-
sions. Aswe mentioned above, syntactic expressivity of
this scheme is essentially equivalent to the expressivity
of unification-based theories (such as HPSG, [Pollard
and Sag, 1987) and LT'G [Bresnan and Kaplan, 1982])
while the semantic and pragmatic expressivity of the
memory-based paradigm is maintained.

Below is a sample lexicon from our experimental
system called MONA-LISA ([Tomabechi, ms]) which
uses the GCPN as the central representational net-
work. Wehave adopted IIPSG as the basis of providing
the linguistic constraints to the svstem as graphs. The
first sample entry is the specification for the concept
*JOHN with the constraints specified here using path
equations similar to the PATR-IT notation ([Shieber,
el al, 1983]).

(def-frame *JOHN
(inherits-from *MALE-PERSON)
(type :lex-comp)

(spelling  John)

(synsem
(def-path
(<0 loc cat head maj> == n)
(<0 loc cat marking> == unmarked)
(<0 loc cont para index> == [[per 3rd]
[num sngl
[gend masc]l)
(<0 loc cont restr reln> == *xJOHN)
(<0 loc context backgr> == [[reln naming]

[name JOHN]])
(<0 loc context backgr bearer>

== <0 loc cont para index>

(<0 mem> == <0 loc cont para index iden>))))

When this lexical definition is read into the system,
the path equations are converted into graphs as shown
below.

(*JOHN
(INHERITS-FROM *MALE~PERSON)
(TYPE

STmplementationally, thev are pointers to graphs instead
of graphs themselves. '

“Of course, the GCPN itself is a graph; however, here,
‘graphs’ means the constraint graphs and not the memory-
network.



(VALUE
(COMMON :LEX-COMP)))
(SPELLING
(VALUE
(COMMON JOHN)))
(SYNSEM
(VALUE
(COMMON
X01[[0 X02([[MEM X03[]]
{LOC XO04[[CONTEXT
X05[[BACKGR
X06 [ [BEARER
X07[[IDEN X03]

[GEND X08 MASC]

(NOM  X09 SNG]
[PER X10 3RD]]

[NAME X11 JOHN]

[CONT X13[[RESTR

X14[[RELN X15 *JOHN]]

storing simple case-lrame type lexical specifications in
the lexical nodes, we provide full graph-based lexical
constraints in the lexical level nodes 1n the constraintg
propagation network. Let us provide a sample lexical
node definition for the object control verb persuaded:

(def-frame *PERSUADED
(inherits~from *PERSUADE-ACTION)
(type :lex-head)

(spelling persuaded)

[PARA  X16[[INDEX X07]]] (<0 loc cat subcat 3> == <3>)

[CAT X17[[MARKING X18 UNMARKED]

[HEAD

(synsem
(def-path
(<0 loc cat head> == [[maj v]
[vform inf]
[aux +]
[inv -]
[prd -11>
[RELN X12 NAMING]II] (<0 loc cat marking> == unmarked)
(<0 loc cat subcat 1> == <1>)
(<0 loc cat subcat 2> == <2>)
(<1 loc cat head maj> == n)
(<1 loc cat head case> == nom)
X19[EMAT X20 N11111)))) (<1 loc cont restr reln> == *person)
(<0 loc cont agent> == <1 loc cont para index>)
(<0 loc cont persuadee> == <2 loc cont para index>)

In the current formulation of GCPN, the constraint
graphs are stored in synsem values of the nodes and
the top level number 0 arc represents constraints to
the node itself. If a node has its complement nodes
the constraints are specified by numbers higher than 0
(in the order of obliqueness). Tor example, the lexical
specification for the node *GIVE looks as follows:

(def~-frame *GIVE
(inherits-from *GIVE-ACTION)
(type :lex-head)
(spelling give)
(synsem
(def-path
(<0 loc cat head> == [[maj v]
[viform bse]

faux -]

[inv -]

[prd -11)
(<0 loc cat marking> == unmarked)
(<0 loc cat subcat 1> == <1>)

(<0 loc cat subcat 2> == <2>)
(<0 loc cat subcat 3> == <3>)

(<0 loc cont reln> == *give-action)

(<1 loc cat head maj> == n)

(<1 loc cat head case> == nom)

(<0 loc cont agent> == <1 loc cont para index>)
(<1 loc cont restr reln> == xperson)

(<2 loc cat head maj> == n)

(<2 loc cat head case> == acc)

(<0 loc cont goal> == <2 loc cont para index>)
(<2 loc cont restr reln> == *person)

(<3 loc cat head maj> == n)

(<3 loc cat head case> == acc)

(<0 loc cont theme> == <3 loc cont para index>)
(<3 loc cont restr reln> == *matter))))

The equations are converted into directed graphs
when read into the system. This way, instead of simply

(<0 loc cont persuadee>

== <0 loc cont circumstance agent>)

(<2 loc cat head maj> == n)

(<2 loc cat head case> == acc)

(<2 loc cont restr reln> == *person)

(<3 loc cat head maj> == v)

(<3 loc cat head vform> == inf)

(<3 loc cat head aux> == +)

(<3 loc cat subcat 1 loc cat head> == [[maj nl

[case nom]])

(<3 loc cat subcat 2 loc cat head> == saturated)
(<3 loc cat subcat 3 loc cat head> == saturated)

(<0 loc cont circumstance> == <3 loc cont>)
(<0 loc cont reln> == *PERSUADE~ACTION)

(<3 loc cont restr reln> == <3 loc cont relnd)
(<3 loc cont restr reln> == %action))))

Thus the two equations:

({ 0 loc cont persuadee ) == ( 2 loc cont para
index })
({ 0 loc cont persnadee ) == ( 0 loc cont circum-

stance agent ))

can easily specify the control constraints lexically in
the network.

The Graph Propagation Recognition

Currently, our graph-based constraint propagation in-
heritance network has 5 types of nodes: conceptual-
class nodes, lexical-head nodes, lexical-complement
nodes, memory-instance nodes, and phonological-
activity nodes. The conceptual-class nodes are nodes
in the high levels of abstraction and are used for dis-
course and episodic recognition. Lexical-head nodes
are nodes that are phonologically invoked with lexical
activations and they package the complement nodes.



lexical-complement nodes are the nodes that are Jexi-
cally invoked and do not have their own complements.
Memory-instance nodes are actual instances of lexical-
heads and lexical-complements that are specific to the
current utterance. Phonological-activity nodes are the
nodes that represent phonemic units and are connected
to the plionemic recognition modules. The activity of
phonological-activity nodes is nol discussed in this pa-
per and the input is assumed to be already hypoth-
esized as words (Please refer to [Tomabechi, ms] for
activities of those nodes).

Below is the central part of our sentential recognition
algorithm for word level mput.

function sentential-recognize (input-stream)

create-process (recognize-lexical (input-stream));

invoke-global-incidents;
for all NODE in DecayingLayer do
print-node (NODE) ; )

function recognize-lexical (input-strean)
reset activities in Activation Layer
and Decaying Layer
for word-hypothesis in input-stream do
create-process (activate-lex-node
(word-hypothesis));
invoke-global-incidents;

function activate-lex-node (word-hypothesis)
create instance of word-hypothesis
and make a copy of constraint graph
with addition of an ‘mem’ arc pointing
to the created instance;
if the node type is lexical-complement
then propagate copied (and modified)
constraint graph upward;

function invoke-global-incidents ()
for head-instance in Activationlayer do
create-process (grab-subcats (head-instance)) ;

function grab-subcats (head-instance)
for arcs specified in subcat graph
(i.e, <0 loc cat subcat>) do
if conceptual restriction necde exists

(i.e, <loc cont rest reln> has value)

and if that node has received
the constraint graph propagation
then unify the subcat graph
with the propagated graph;
if unify succeeds
and obliqueness order is met
then store result destructively
in head-instance;

propagate synsem graph upward;

Originally, the GCPN is configured hierarchically
in terms of conceptual inheritance. Graph propaga-
tion occurs only upward in the inheritance hierarchy
and never horizontally. Conceptual relations (other
than inheritance) between lexical nodes are specified
through constraint graphs (as seen in the sample en-
try in the previous section). All nodes originally be-

long to StaticLayer and when they arc lexically invoked
they move into an activaled stale (the nodes move
to ActivationLayer). Only the salurated lexical-head
nodes move to the Decayinglayer. So at the end of
the recognition, the constraint 0 graph (i.e. the con-
straint to itsell) of the nodes in the DecayingLayer
contains information that can be used for further pro-
cessing (such as generation). Aclually, the printout of
the constraint 0 graph of the Decaying node should
look exactly like that of the output of a unification-
based parser®. Let us briefly look at the constraint
propagation activity with the recognition of John per-
suaded Mary to give Sandy sushi. First when the word
John activates the lexical-complement node *Joun, an
instance *JOHN0O1 is created.® When the instance is
created, the synsem graph of *JOHN is copied while
putting the created instance as the destination of the (
0 mem ) path of the newly created synsem graph. This
synsem graph is propagated upward in the abstrac-
tion hierarchy (through *MALE-PERSON, *PERSON, ...}.
When the activation reaches the top of the abstrac-
tion hierarchy, then global-incidents is triggered. All
currently activated head-instances concurrently check
their subcat graph paths and if their destination nodes
have currently received a graph propagation, then the
head-instance’s constraint graph and the propagated
graphs are unified. Since at this moment no head-
mstance is activated nothing happens. When the next
word persueded is hypothesized, a head-instance *PER-
sUADEODO] is created and a constraint-graph containing
*pERSUADEOOT in the { 0 mem ) graph path is propa-
gated upward in the abstraction hierarchy. When the
activation reaches the top, global-incidents is invoked
and PERSUADEQQ1 which is a head-instance fries to
grab its subcat fillers by checking the content of ( loc
cont rest reln ) path for each of the subcategorization
elements. Since *PERSON has already received a graph
propagation at the recognition of John the propagated
constraint graph of *JouN001 is unified against the
( 0 loc cat subcat 1) graph of the constraint graph
contained in *PERSUADEOO1. This succeeds and the
result graph is stored in *PERSUADEOO1. When the
rest of the sentence is input, *GIVE gets partially satu-
rated with *Sanpy and *susHl and while the subject
is still unfilled is grabbed by the subject control verb
head to which is in turn grabbed by object control verb
head persuade (*PERSUADEQQO1). With the graph con-

5Except for one significant difference which is that the
constraint 0 graph actually contains pointers to the real
instances in memory (such as Mary001) instead of a simple
string (such as “Mary”) found in unification-based parsers.

8If an instance of *JOHN already exists then both are
considered as candidates with currently existing instance
with less cost assigned. Cost (and reverse cost) informa-
tion is used for plionemic confusions, lexical ambiguity, and
multiple instance candidates and recurrent net subsymbolic
conceptual predictions in the MONA-LISA system which is
not discussed in this paper.



vergence specified in the constraint graphs represent-
ing control relations both *ro001 and *PERRSUADEOO]
get their subject and object positions filled respectively
with the appropriate instance MaARY001. At the end of
the recognition only *PERSUADEOOT moves to the De-
cayinglayer (only fully saturated head-instance) and
the synsem graph of *PERSUADEQOT contains the fully
built result of the recognition.

Discussion:

We have seen in the previous sections thal our model
is capable of taking advantage of constraints that are
postulated in modern linguistic theories by fully sup-
porting arbitrary graphs to be used as constraints in
the network. In fact our current implementation uses
HPSG which is represented by path equations (which
are automatically converted to directed subsumption-
ordering graphs”) that are no different from the gram-
mar that we are using for the unification-based parsers.
This is in contrast to the past attempts in augment-
ing the memory-based paradigm with syntax (such as
[Tomabechi and Levin, 1989]) where due to the archi-
tectural limitation of the memory-hased system, full
configurational constraint processing could not be sup-
ported. Given that our model is basically memory-
based (i.e., spreading activation on memory) advan-
tages of the memory-based recognition (such as di-
rect memory access inferences on episodic memory dis-
cussed extensively in the existing literature) are main-
tained on top of the capacity to handle syntactic con-
straints. Moreover, clearly memory-based (DMA) net-
work would significantly overgenerate without strong
syntactic constraints as demonstrated in our example
of object conirol phenomena. Without the conirol con-
straint, the subject of an embedded clause could be
any instance that meets semantic requirements ({or
example *Joun001 and *Mary001). Seemingly sim-
pler phenomena such as agreement of case are equally
problematic for the memory-based systems since the
case of a noun phrase (entity) is not determined until
the actual time of utterance and often case require-
ments are postulated from external clauses. In other
words, without strict syntactic processing, there will
be a massive overgeneration of acceptable candidates
with semantics and phrasal lexicon alone with a realis-
tic grammar. This means that naive acceptance of the
DMA style marker-passing scheme as an extremely fast
way of natural language recognition needs to be reex-
amined. Application of fragments of knowledge could
be very fast in a simple marker intersection search, but
with a realistic linguistic coverage that in return means

"Subsumption ordering is an assumed condition for the
graph-based representation in unification-based grammar
formalisms. Simply put, the information content repre-
sented by the directed graph node which is closer to the
root of the graph subsumes the information content of the
nodes further from the root in the same graph.

massive overgeneralion which cannot be solved by in-
crease in number of processing units and parallelism.

Another important advantage of our model is that
the singularity of the control structure and the unifor-
mity of the processing are maintained. Past attempts
to enhance spreading activation marker passing recog-
nition to handle syntactic constraints cither inevitably
involved introduction of arbitrary functional applica-
tions to handle syntax (such as [Tomabechi and Levin,
1989]) or required a separate control structure (i.e.,
syntactic parsers) to handle syntax (such as [Norvig,
1989] and [Ilendler, 1989]). In the graph-based con-
straint propagation network, the control structure is
the propagation of constraint graphs which is uniform.
The constituent build-up for subsumption-ordering
graphs and the constraint applications are also uni-
formly performed by graph-unification requiring no
prestored and arbitrary functional constraint checking
mechanism. One rather practical advantage due to the
support of graph unification as the constraint applica-
tion mechanism is that the result of configurational
buildup of the subsumption-ordering graph (as postu-
lated in unification-based linguistic theories) is incre-
mentally created during the recognition. These results
of constituent buildup are stored in the path 0 graph in
our implementation. (Path 0 represents the constraint
to the node itself, whereas paths 1, 2, and 3 represent
the constraints for its complements). Thus, at the end
of the sentential recognition, the constraint 0 graph of
the head-instance which survived through constraint
propagation and moved into the DecayingLayer repre-
sents the feature-structure representation of the result
of the recognition. This result graph can be extracted
out and be passed to other natural language and infer-
ential modules if necessary.

Conclusion

The paradigm of natural language recognition based
upon the direct recognition in a semantic memory has
been appealing from different view points. These in-
cluded the appeal from the cognitive view-points as
well as the phenomenological ones (especially the as-
sumed massive-parallelism). The paradigm’s practical
appeal as a parsing architecture has been strong as
well due to its strength in handling contextually sensi-
tive inputs. However, one significant weakness of this
paradigm has been its lack of capacity to handle syn-
tactic constraints in a manner that is consistent with
the rest of the memory structure. Linguistic and psy-
chological communities have long accepted the signif-
icance of syntactic constraints as playing an impor-
tant role in many types of linguistic phenomena. On
the other hand, with few exceptions, syntactic con-
straints have been either ignored or handled in an ad
hoc manner. Qur model attempts to model interac-
tions among various syntactic constraints (as repre-
sented by graphs) as well as between syntax, semantics
and pragmatics in a principled manner through a uni-



form representation and a singular control structure
of constraint propagation. 1t should be emphasized
that the syntactic processing 1s fully integrated into
semantic processing since both semantic and syntactic
constraints are represented through directed graphs.
The processing itsell s semantic-driven since the graph
propagation in the semantic network is the underlying
control structure.® In our model, phenomena such as
case, agreement, conirol, binding, and long-distance de-
pendency can be handled in a generalized manner most
straightforwardly as formulated by the modern linguis-
tic theories based upon feature structures and unifica-
tion. The difference between this model and past ‘syn-
tactic daemon’ models is substantial both in terms of
the expressivity and generality of constraint applica-
tions. Generalized linguistic phenomena such as those
mentioned above are represented and processed in a
principled manner compared to an ad hoc and spe-
cialized manner associated with the prestored daemon
models®. With the expressivity of our model in cap-
turing the syntactic constraints as postulated in the
modern linguistic theories and uniformity of process-
ing them that is integrated to a spreading activation
memory-based natural language recognition in a prin-
cipled manner, our model seems viable as one paradigm
of natural language recognition.
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Implementation

We have implemented our demo system on a Sequent
Symmetry shared-memory parallel machine with 16
CPUs by simulating massive-parallelism by taking ad-
vantage of micro-tasking parallelism using light-weight
processes in parallel CommonLisp. The activation in
the GCPN is only propagated upward in the inheri-
tance hierarchy and never horizontally. Since the in-
crease in the grammar size takes place horizontally, the
complexity increase can be essentially countered by an
increase in the number of processing units.
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