SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(7), 603-622 (JULY 1994)

Signature-check Based Unification Filter

ALFREDO M. MAEDA, JUN-ICHI AOE AND HIDETO TOMABECHI
Department of Information Science and Intelligent Systems, University of Tokushima, 2-1
Minami Josanjima Cho, Tokushima-Shi 770, Japan (email: maeda@yj-aoe.is.tokushima-
u.ac.jp)

SUMMARY

Among the different processes that entail unification-based grammar parsing, the unification of feature
structures is by far the most expensive one in terms of execution time. Unification of the feature
structures of a given sentence typically takes between 85 and 98 per cent of the total elapsed time during
parsing, thus the need to develop faster unification methods. The approach presented in this paper is
based on the fact that, in general, between 60 and 85 per cent of unifications attempted in a typical
parse result in failure. Our claim is that the efficient treatment of such unification failures reduces
unification time significantly. In this paper we present what we call a unification filter or U-filter, that
preprocesses the feature structures to be unified. If the U-filter succeeds, unification is then skipped
because the attempt to unify the involved structures would result in failure. On the other hand, when
the U-filter does not succeed it is not possible to determine at that moment whether or not the structures
unify, so unification is performed. The U-filter stops around 87 per cent of unification failures, and
speeds up unification time by an average of around 29 per cent over quasi-destructive graph unification,
the fastest unification method known so far.

KEY worDS Graph algorithms Natural language processing and understanding Parsing Pattern matching
Unification Unification filtering

INTRODUCTION

The most expensive operation, in terms of time consumption, in unification-based
grammar parsing systems is, by far, the unification of feature structures. By using
well-known parsing algorithms, such as Earley’s! or Tomita’s,? it is rather common
to have unification operations take as much as 95 per cent of the total time required
.0 parse natural language phrases. In the case of the JPSG*—the Japanese phrase
structure grammar—based on HPSG*>—the spoken Japanese analysis system
developed at ATR—unification operations reached up to 98 per cent of the total
parsing time for some sentences.® This number is also affected by the fact that
ATR’s system is designed to cover a large number of linguistic phenomena, thus
requiring more unifications to be performed. This brings about what is better known
as the unification paradox. Namely, for a given natural language (NL) system, as
the coverage of linguistic phenomena increases and the NL system gets larger, the
number of unifications to be performed increases so rapidly that the overall perform-
ance of the system degrades drastically. This justifies the urgent necessity to develop
more efficient and faster unification schemes.

The degree of sophistication and efficiency of unification algorithms has become

CCC 0038-0644/94/070603-20 Received 8 December 1993
© 1994 by John Wiley & Sons, Ltd. Revised 8 March 1994

604 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

notably high and they are also used for code optimization,’ especially because of the
treatment efficiency of copy propagation and function-preservation. Nevertheless,
unification remains the bottleneck of unification-based grammar parsing systems.
This is true basically because of the tremendous number of graphs to be tested for
unification, especially if the grammar is designed to cover a wide range of linguistic
phenomena. Since typically between 60 and 85 per cent of the unifications performed
in a typical parse result in failure, the attempt to unify them only generates overload
to the unification process. Hence the need for a mechanism able to deal with
unification failures efficiently. The main claim here is precisely that, empirically,
the efficient treatment of unification failures should result in a significant speed-up
of unification time. The resulting scheme based on this observation is the unification
filter (henceforth U-filter).

UNIFICATION SCHEMES

Vast research on the solution of the graph unification bottleneck has been done
since the development of the unification formalism itself. An early efficient unifi-
cation method called structure-sharing® consists of sharing the information, in the
directed graphs, that remains unmodified after unification. Such sharing of structures
replaces the time consuming operation of graph copying by the dynamic creation
of the resulting graph whenever needed. Since graph creation occurs each time the
graph is needed, an undesirable log(d) overhead exists for all node accesses to
update information in the graph being unified. Reversible unification® consists of
saving away the original graph prior to a destructive change, allowing the ‘undo’ of
destructive changes. This approach, in spite of avoiding the log(d) overload inherent
in structure sharing, conveys a double cost, namely the saving of structures prior
to unification and the reversing of unification. Both operations are proportionate
to the size of the input graph.

Incremental copying, a scheme called non-destructive graph unification,'® consists
of the incremental creation of copies as such need arises. This scheme consists of
the combination of both a destructive and a non-destructive unification algorithm
in which copies are created incrementally. Non-destructive unification eliminates
two important costs, namely the fixed cost overhead log(d) for node access and the
cost for reserving destructive changes through reseting the copy field by means of
invalidation. Non-destructive graph unification, however fast, has the disadvantage
of generating over-copy of structures. Over-copy occurs when two graphs are copied
in order to create a new graph.

Lazy incremental copy® avoids the copying of unchanged subgraphs by using
dependency pointers, and needed copies are created from the lower subgraph. This
scheme allows the copying of nodes whose subgraph was never modified to be
avoided, but conveys two main disadvantages. It requires the copy dependency
pointers in every node of the entire graph to be maintained, and requires bidirec-
tionality in the entire directed graph to double-traverse modified graphs, i.e., once
to unify and once to copy the graphs. Lazy non-redundant copying*! is a combination
of structure sharing and incremental copying. Incremental copying takes place in a
way similar to non-destructive graph unification,'® however, the copying of nodes
is delayed until the moment when a destructive change is about to happen. Such a
delay is controlled by ‘chronological dereference chains’,'* which is a data structure

SIGNATURE-CHECK BASED UNIFICATION FILTER 605

independent of the actual unification algorithm, making it possible for implemen-
tation into any other unification scheme. Unfortunately lazy non-redundant copy
adopts the disadvantages of its schemes base, namely incremental copying and
structure sharing overload.

A fast variation of non-destructive graph unification, called quasi-destructive graph
unification!?!® (QD) is based upon the notion of time-sensitive quasi-destruction of
node structures. QD eliminates both early-copying and over-copying of graphs, and
runs in about half the time of non-destructive graph unification. In early-copying
copies are created prior to the failure of unification, so that copies created since
the beginning of the unification up to the point of failure are wasted. Quasi-
destructive graph unification with structure sharing'>** (QDS) is basically a QD
scheme with structure sharing included. QDS eliminates redundant copying of shared
subgraphs while avoiding both over-copy and early-copy. The result is an extremely
fast algorithm that runs in about 23 per cent of the time compared with non-
destructive graph unification, making QDS the fastest unification algorithm known
so far. As will be shown later, the inclusion of our U-filter into unification-based
grammar parsing systems as a pre-unification process allows unification operations
to be processed significantly faster.

SIGNATURES

A signature is a coding approach commonly used for text retrieval. Word signatures
hash each word of a document into a fixed-length bit pattern, i.e. a word signature.'
The resulting patterns are then concatenated to form the document’s signature.
Searching operations are performed by extraction of a particular signature and its
comparison with all the document’s signatures. One of the most common signature
schemes is superimposed coding.'®'” The underlying idea in this scheme is to map
attributes into random m-bit codes in an n-bit field. The codes are then superimposed
for each attribute that is present in a record. Other approaches for text retrieval
include finite state pattern matching machines'® and the computation of longest
common subsequences. '

The incorporation of signature-checking methods in unification is rather cumber-
some. In general, signature checking and other approaches to text search are con-
cerned only with the finding of occurrences of a sequence within a text, independently
of the context or the logical position of such sequence within the text. On the other
hand, the logical position and the associated value of the different features in a
graph are of primary importance in unification, mainly because a given feature may
appear more than once within the same graph. This difference makes signature
schemes uneasy to implement as part of the unification process.

PROPOSED APPROACH

The underlying idea in the U-filter scheme consists of preprocessing, i.e. U-filtering,
the F-structures, or graphs, to be unified prior to unification itself. If the U-filter
succeeds, unification is then skipped because the attempt to unify the involved
structures would result in failure. On the other hand, when the U-filter does not
succeed it is not possible to determine at that moment whether or not the structures
unify, so unification is performed. The U-filter introduced here consists of two main

606 A. M. MAEDA, 1.-1. AOE AND H. TOMABECHI

parts, namely the creation and inclusion of unification signatures (henceforth U-
signs) into the parsing system’s grammar, and the unification filtering itself.

Unification signature data structure

Well-known text search approaches are not directly applicable to unification,
basically because these do not take into account the logical position, or context, of
the string being searched. However, since signature-check approaches to text-
retrieval are highly efficient, to adapt such approach into unification is attractive.

To make U-filtering possible, the addition of a signature slot into the graph’s
data structure is required. Since directed graphs are normally used for graphic as
well as computational representation of feature structures (henceforth f-structures)
the terms graph and f-structure are used indiscriminately throughout this paper. An
f-structure is composed of three basic types of nodes: atomic nodes, complex nodes
and top, or variable, nodes. Afomic type nodes are f-structures with constant atomic
symbol value. Complex type nodes are f-structures that contain f-structures, i.e.
atomic, complex or top nodes. Top nodes are special ~structures with empty domains,
i.e. variables. In Figure 1, for example, nonc and moshimoshi-hello are atomic nodes,
the nestings of f-structures under substructures such as head or prag are represen-
tations of complex nodes, and variable nodes are represented as ‘[]’. Additional
information on f-structures is shown in Figure 1. Re-entrancy, or muitiple path

ctype X05 nonc

%01 [1 %02 [head X03 [cform X04 senf 1]
X06 v

subcat X07 end

sem X08 |recp XO09(]

agen X10[]

reln X1l moshimoshi-hello
prag X12 [speaker X10]
hearer X09
[restr X13[]
| slash X14[]
2 Xi15 [prag X16 [restr xi7[]]
hearer X09

| speaker X10 |
sem X18(}

subcat X19 [firs‘t X02]
rest ¥20[]

Lhead X21(i -
0 ¥22 [prag 23 [restr x24[rest xi3
first X17
hearer X09
speaker X10
sem Xi18

slash Xl4
subcat X20
(head X21

Figure 1. An f-structure with atomic, complex, and top nodes

SIGNATURE-CHECK BASED UNIFICATION FILTER 607

sharing, is represented as X,,,, where nn = 0. The indexes O, 1, ..., identify the -
structure for the different constituents of linguistic situations in accordance with the
HPSG formalism.> For example, for the situation § — NP VP, the constituent
structure X0 — X1 X2 is indexed as 0 — 1 2, where X1 is the head constituent.

After analysis of the nature and structure of f-structures, the use of a very simple,
but powerful, unification signature for U-filtering was decided. The U-sign of a
given f-structure consists of a list that encloses all the atomic and complex nodes
of the f-structure’s head constituent, while ignoring all occurrences of top nodes.
The U-sign is defined as follows:

Definition 1

A unification signature is an ordered structure composed of all the atomic and
complex nodes of the head constituent of an f-structure, keeping their content and
context within the f-structure.

List structures are easy to operate, and their embedding is simple, allowing a
straightforward representation of f-structures. U-signs are alphabetically ordered to
allow a simpler and faster scanning during the filtering process. Top nodes are
ignored because they are dynamic and vary in content during unification. Re-
entrancy is ignored because it is also dynamic and, in addition, because it deals
with the f-structure of all the constituents of the situation to be unified, and not with
the head constituent only. Consequently, the filter only ensures that the structures are
compatible according to content and context within the head constituent of the f-
features to be unified. This compatibility check process is actually the same as that
performed during unification. However, in contrast to unification, the U-filter does
not perform the update of top nodes nor the expansion of structures that takes
place only if content and context do not fail. Analysis of the atomic and complex
nodes of head constituents is enough for the purpose of the U-filter. For example,
the U-sign shown in Figure 2 corresponds to the f-structure in Figure 1.

Note that the signature is an alphabetically ordered list, includes only information
from the head constituent of the corresponding linguistic situation, and contains
neither top nodes nor re-entrancy specifiers. Since U-signs are rather small and
conform only an extra slot in the graph’s data structure, the amount of extra storage
needed is minimum; besides, no time is wasted because the grammar U-signs are

((head (cform eenf)
(ctype nonc)
(pos v))
(prag (hearer)
(restr)
(speaker))
(sem (agen)
(recp)
(reln moshimoshi~hello))
(slash)
(subcat end))

Figure 2. Unification signature (U-sign) of the f-structure shown in Figure 1

608 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

created and stored beforehand as part of the grammar. The overload for creation

and sorting of the input sentence is immediately compensated for by the U-filtering
timing itself.

Unification signature creation algorithm

The U-sign creation algorithm consists of a main function, create-sign{), two
complementary functions to conform the signature, get-sign1() and get-sign2 {), and
a function that sorts alphabetically the signature, sort-signature(). A COMMON
LISP version of the U-sign creation algorithm is shown in Appendix I. These
functions are described in detail next.

The function create-sign(), listed in Figure 3, has as parameter the data structure,
i.e. a list of lists, that corresponds to the head constituent of the graph whose U-
sign is to be created. The components of the head constituent are sent, one at a
time, to get-sign1() in order to build the corresponding portion of the U-sign. Each
portion is received back by create-sign() to be processed accordingly and to be built
up into one single list. Such list processing consists basically of analysing the data
type of the head and tail* of the sublists in order to build a sound unification
signature. Once the head constituent has been completely analysed, the resulting
list is sorted alphabetically to obtain then the U-sign for that particular graph.

The functions get-sign1() and get-sign2() work together in the selection of the
different elements of the sublist received from create-sign() to build a portion of U-
sign. Get-sign1() is responsible for the treatment of atomic and top nodes, whereas
get-sign2() is responsible for the treatment of complex nodes.

FUMCTIOM create-sign (dg);
sign <« nil;
signature +« nil;
IF empty structure TBENW
return (nil);
ELSE FOR EACH subdg IM dg DO
sign <« get-signl((subdg tail); nil);
IF (sign type = list) ANMD (sign head = atom) THEHW
sign «— append ((list (subdg head)), sign);
ELSE IF (sign type = list) THER
sign « append ((list (subdg head)),
(list sign));
signature <« append signature, sign;
signature <« sort-signature(signature);
END

Figure 3. Main function to create a signature: create-sign()

* Lists and structures, analysed as lists, are divided into a head and a tail. The head is the first element of the
list, and the tail, which is also a list, contains the rest of the elements of the list.

SIGNATURE-CHECK BASED UNIFICATION FILTER 609

In get-sign1(), listed in Figure 4, atomic nodes are taken as such and incorporated
later into the corresponding sublist. Top nodes are simply ignored, i.e. not included
into the U-sign. Complex nodes are divided into sublists and analysed accordingly.
If the sublist is again a complex node then it is sent to get-sign2() for processing and
the results are handled again in get-sign1() accordingly. If the sublist is not a complex
node then it is sent recursively to get-signi() for further processing.

In get-sign2(), listed in Figure 5, the sublist is first sent back to get-sign1() to be
processed as an independent list, and the returned list is then incorporated into a
subsignature. The resulting subsignature is sent back to get-sign1() to be included
in the U-sign. Note that the U-sign is built recursively from the innermost nesting
to the uppermost nesting of the head constituent.

The resulting list from get-sign1() is finally sent to sort-signature(), listed in Figure
6, where it is recursively scanned to be sorted alphabetically. If the sublist to be
sorted consists of an attribute-value pair where the value is atomic, then the sorting
is not performed because doing so would alter the signature, making it not correspond
to the original head constituent.

Observe that in the U-sign creation algorithm it is assumed that the f-structure’s
head constituent is the first element of the list that conforms the graph. Therefore

FURCTION get-signl(dg; sign);
subsign « nil;
IF (dg type = atom) THER
sign +« dg;
ELSE IF (dg type = top) THEW
sign « nil;
ELSE FOR EACH subdg IN dg DO
IF (subdg tail type = complex) THEN
subsign < get-sign2(subdg);
IF null sign THEK
pign < (list subsign);
ELSE sign « append sign, (list subsign);
ELSE subsign « get-signl((subdg tail); sign);
IF null subsign TEER
IF null sign THENW
gign + (list (subdg head));
ELSE sign «— append sign, (list (subdg head));
ELSE IF (subsign type = list) THER
sign < append sign, (list (subdg head)),
» (list subsign); ’
ELSE sign <« append sign,
(list append (list (subdg head)), -
(list subsign));
ERD

Figure 4. First complementary function to create a signature: get-signi()

610 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

FUNCTION get-sign2(dg);
sign + nil;
- IF null dg TREH
nil;
BLSE sign <« get-signl(dg tail; nil);
IF (sign type = list) AMD (sign head type = atom) THEN
sign <« append (list (dg head)), sign;
ELSE sign « append (list (dg head)), (list sign);
END .

Figure 5. Second complementary function to create a signature: get-sign2()

FUMCTION sort-signature (signature);
IF (signature length > 1) TREN
signature + sort signature alphabetically according to
upper level features;
FOR EACH subsign IN signature DO
IF (subsign length = 1) AWD
(subsign head type = atom) THEN.
subsign;
ELSE IF (subsign length = 2) AND
(subsign tail head type = atom) THEN
subsign;
ELSE subsign <« sort-signature(tail subsign);
END

Figure 6. Function to sort a unification signature: sort-signature()

it is important to make sure that the builder of the grammar keeps this in mind at
unification-based grammar creation time. Signature creation may seem to be an
overload to the system’s performance. However, since signatures are stored within
a slot of the graph’s data structure, the signatures for the entire unification-based
grammar parsing system can be stored permanently in the grammar beforehand.
The only signature to be built at run time is the signature that corresponds to the
input sentence. The signature for a given input is rebuilt whenever a different f-
structure for the same input has to be analysed, such as when ambiguities occur.
This overload is small enough as to not affect the overall operation of the U-filter.

Unification filtering

The U-filtering process itself is straightforward. It consists of pattern-matching
the two signatures that correspond to the graphs to be unified, ensuring-that the
content and context of features are compatible in both signatures. The U-filter
always sends back to the parser a ‘filter-decide parameter with a Boolean value. A ‘filter-

SIGNATURE-CHECK BASED UNIFICATION FILTER 611

decide parameter with value true is returned to the parser if and only if incompatibility
between the signatures was found. This means that, since the head constituent of
the f-structures to be unified does not match in the contents of their atomic and
complex nodes, regardless of the existent top nodes, any attempt to unify them
would undoubtedly result in failure. Consequently, the unification that was about
to be performed is simply skipped and the U-filter is applied to the next unification
process, if any. On the other hand, a ‘filter-decide parameter with value nil is returned
to the parser if and only if the signatures are fully compatible. This value indicates
that the U-filter cannot determine whether or not unification of the corresponding
graphs succeeds. That is, no guarantee exists then that unification over the corre-
sponding graphs will indeed succeed, but there is a high possibility of success.” As
result, unification over the graphs is performed by the paser.

The importance of the U-filter lies in that it runs significantly faster than unification
itself. Therefore each time the U-filter detects that the graphs do not unify a time
saving is obtained; namely the time span that would be taken to actually try to
unify the graphs. On the other hand, whenever the U-filter is unable to determine
if unification would fail, a time overload is obtained. That is, the total unification
time for the corresponding graphs would be the U-filtering time plus the unification
time. This overload is inevitable whenever unification succeeds, and is, so to speak
the ‘price to be paid’ for the benefit of being able to stop the majority of non-
unifiable f-structures. Obviously the worst case occurs when the U-filter does not
determine unification failure and unification actually fails because then two wasted
time spans have to be added to parsing time, namely unsuccessful filtering and
unsuccessful unification. Although U-filtering implies an extra consumption of time
in parsing, existing unification schemes run significantly faster with the U-filter as
a preprocess of them than without it.

It is important to note that U-filtering always takes place before unification.
Furthermore, since the U-filter is independent of unification, it is possible to
implement it as a process prior to any known unification scheme, significantly
decreasing the total unification time in virtually any unification scheme. Note that
the U-filter does not perform graph unification, it only performs pattern-matching
of the signatures that correspond to the graphs to be unified.

Unification filter algorithm

The U-filter algorithm consists of a main function, unification-ilter(), two functions
that perform the filtering of signatures, u-filter1() and ufilter2(), and a function
dedicated to finding common occurrences of elements in the signatures, get-next-
match(). The corresponding COMMON LISP program is shown in Appendix II.

The function unification-filter(), listed in Figure 7, performs two simple actions.
First, set up a catch~throw construct by assignment to a tag, in this case "filter-decide,
that immediately stops execution whenever a value is assigned to it in an invoked
function, and return that value to unification-filter(). Secondly, call the function that
scans the U-sign by recursively taking one sublist of each U-sign at a time, namely
u-filter1(). Note that unification-filter() always returns a Boolean value. A returned
value true means that the U-filter detected inconsistency, i.e. the attempt to unify

* Around 87 per cent in the implementation discussed in this paper.

612 A. M. MAEDA, J.-I. AOE AND H. TOMABECHI

FUNCTION unification-filter (signaturel; signature2);
result < catch with tag ‘filter-decide
calling u-filterl(signaturel; signature2);
return (result);
END

Figure 7. Main function for U-filtering: unification-filter()

the graphs would result in failure, so unification is unnecessary. On the other hand,
a returned value nil means that the U-filter found no inconsistencies, i.e. cannot
determine whether or not unification fails, so unification becomes necessary.
Ufilter1(), listed in Figure 8, first checks the head of the first sublist of the
U-signs to be filtered. If the U-signs’ heads are equal and contain no tails, and no
tails in the U-signs exists, then return 'filter-decide with value nil, i.e. unification is
needed. However, if the U-signs have tails, then recursively call u-filter1() with the
U-signs’ tails as parameters. If any of the head sublists have a tail then a catch-throw
construct with the tag 'u-filter2-stop is created and the process is forwarded to u-
filter2(). If both U-signs have no tail, then return ‘filter-decide with value nil and finish
the u-filter1() process at the corresponding level of recursion. On the other hand, if

FUNCTION u-filterl(signaturel; signature2);
signlh +« (signaturel head);
sign2h «— (signature2 head);
signlt « (signaturel tail);
sign2t < (signature2 tail);
TF (signlh head) = (sign2h head) THEN
IF ROT ((null (signlh tail)) OR (null (sign2h tail))) THER
result < catch with tag ‘u-filter2-stop
calling u-filter2((signlh tail); (eign2h taily));
IF (null signlt) OR (null sign2t) THEM
‘filter-decide <« nil; throw with keyword ‘filter-decide;
ELSE u-filterl((signlt); (sign2t));
ELSE IF (null signlt) AMD (null sign2t) THEX
‘filter-decide + nil; throw with keyword ‘filter-decide;
ELSE signaturel; signature2 " get-next-match(signaturel;
signature2);
IF (null signaturel) OR (null signature2) THENW
‘*filter-decide « nil;
) throw with keyword ‘filter-decide;
ELBE u-filterl(signaturel; signature2);

Figure 8. First complementary function for U-filtering: u-filteﬁ()

SIGNATURE-CHECK BASED UNIFICATION FILTER 613

tails exist then call get-next-match() to obtain the next common sublist and, if any
was found, recursively call u-filter1(); otherwise return 'filter-decide with value nil and
finish the process at the current level of recursion.

The actual decision upon when the U-filter succeeds, i.e. when unification is not
needed, takes place within u-filter2(), shown in Figure 9. First, if the U-subsigns are
atomic and equal then return ‘u-filter2-stop with the value true, which means that U-
filtering of the subsigns succeeded, and finish the process at the current level of
recursion. On the other hand, if the U-subsigns are different, return ‘filter-decide
with the value true, meaning that unification is not necessary, and finish the process
at the corresponding level of recursion. If no third sublist exists in both U-signs,
i.e. no further U-subsigns exist, then do the following. If the U-signs have no tail
then return 'u-filter2-stop with the value true and finish the process at the current
level of recursion. If tails exist then check if the U-signs contain only heads with
equal content; if so return 'filter-decide with the value true, and terminate the process
at that level of recursion; otherwise recursively call u-filter2() with the U-signs’ tails
as parameters. However, if further U-subsigns exist do the following. If the U-

FUNCTION u-filter2(signaturel; signature2);
signl +« (signaturel head);
sign2 < (signature2 head);
IF (signl type = atom) OR (sign2 type = atom) THER
IF signl = sign2 TEEN i
tu~-filter2-stop « true; throw with kejword ‘u-filter2-stop;
ELSE ‘filter-decide « true;
throw with keyword ‘filter-decide;
ELSE IF (nﬁll (eignl third)) AND (null (sign2 third)) THEK
IF (null (signl tail)) OR (null (sign2 tail)) THENW
‘u-filter2~-stop « true;
throw with keyﬁoxd ‘u-filter2-stop;
ELSE IF (signl head) = (sign2 head) AND :
NOT (signl second) = (sign2 second) TEEN
‘filter-decide +« true;
throw with keyword 'filter-decide;
ELSE u-filter2((signl tail); (sign2 tail));
ELSE IF MOT (s8ignl head) = (sign2 head) TEBEW
‘u~-filter2-stop < true; : .
) throw with keyword ‘u-filter2-stop;
ELSE IF (signl head type = atom) TEHEN
u-filterl((signl tail); (sign2 tail));
ELSE u-filtgrl(aignl; 8ign2);
u-filter2((eignl tail); (sign2 tail));

Figure 9. Second complementary function for U-filtering: u-ilter2()

614 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

subsigns’ heads are different then return 'u-filter2-stop with the value true and finish
recursion at that level. If the U-subsigns’ heads are different but both are atomic
then recursively call u-filter1() with the U-signs’ tails as parameters. Otherwise
recursively call both uilter1() and u-ilter2(), in that order, with the U-signs and
their tails as parameters, respectively, and finish the process at the current level of
recursion.

Get-next-match() is the function devoted to finding common elements, i.e. sublists
or atoms, in the U-signs being U-filtered; see Figure 10. This function’s process
consits of the recursive comparison of the sublists’ heads until a match is found.
Once this has been accomplished, the matching sublists are sent back to u—fllter1()
Here it is important to have the signatures alphabetically ordered.

AN EXAMPLE OF U-FILTERING

In order to get a clear idea of the U-filter’s simplicity, an example of successful and
unsuccessful filtering is illustrated in Table I. Successful U-filtering takes place
between U-SIGN1 and U-SIGN2, and unsuccessful U-filtering takes place between U-
SIGN1 and U-SIGN2<$. Note that U-SIGN2 consists of a modified version of U-SIGN2
and thus only some parts of the U-filtering are shown. The actions and results of
U-filtering are indicated in the corresponding ‘Action/result’ and ‘Action/resultd>’
columns.

U-filtering between U-SIGN1 and U-SIGN2 takes place as follows. The first sublist
is scanned in u-filter1(). Since both sublists are atomic and contain the same head
feature, head (see steps 1 and 2 in Table I), the corresponding tails are sent to u-
filter2() to be compared recursively. Once in u-filter2(), each sublist is analysed by
comparison of heads and tails, resulting in a successful match (steps 3 to 6). Note

FUNMCTION get-next-match(signl; sign2);
lisl « (signl head);
1is2 « (sign2 head);
auxl <« nil;
aux2 <+ nil;
IF (listl head) = (((sign2 tail) head) head) THER
return (signl; (sign2 tail)); '
ELSE IF (((signl tail) head) head) = (lis2 head) THENW
return ((signl tail); sign2);
BLSE IF nul lisl OR null lis2 THENW
return (signl;sign2);
ELSE auxl; aux2 + get-next-match(signl; (sign2 tail));
IF null aux2 THEM
auxl; aux2 s— get-next-match((signl tail); sign2);
return (auxl; aux2);
END

Figure 10. Function to get the next common elements in a U-sign: get-next-match{}

SIGNATURE-CHECK BASED UNIFICATION FILTER

Table 1. A simple example of U-filtering

615

Step U-SIGN1 U-SIGN2 U-SIGN2O Action/result Action/result$

0 ((head (cform senf} (pos v)} ((head (cform senf)} (prag {{thead {cform)) {sem

{sem (agen) (reln hello)) {thearer) (speaker) {sem {reln goodbye)))
{subcat endj} {agen} {rein helio)))

1 {head (cform senf} (pos v)) (head (cform senf)) {head (cform)) get sublist get sublist

2 head head head match match

3 ({cform senf) {pos V)) {cform senf) — get sublist

4 {cform senf) (cform senf) — get sublist

5 cform cform cform match match

6 senf senf nil match skip

7 {pos v) nil — skip

8 {sem (agen) {rein helio)} {prag (hearer) (speaker)} — — skip

9 {sem {agen) (reln hello)) {sem (agen) {rein helio)) {sem (reln goodbye)} get sublist get sublist
10 sem sem sem match match
11 {tagen) (reln hello)} {{agen) {reln hello)) — get sublist
12 (agen) {agen) — match
13 {reln hello} {reln hello) {rein goodbye) get sublist getsublist
14 reln rein reln match match
15 hello hello goodbye match U-filter=t
16 (subcat end) nil — skip
17 nil nil — U-filter=nil

that since the remaining tail, (pos v), does not exist in U-SIGN it is skipped in get-
next-match() (step 7). The rest of the list is then analysed in u-filter1(). Since the
head sublists are different (step 8), a get-next-match() is performed and U-filtering
over the extracted sublists takes place. Again, pattern-matching of sublists takes
place successfully (steps 9 to 15). Finally, the get-next-match() for (subcat end) reaches
the end of the lists (step 16), and since no inconsistency was found U-filter returns
to the parser a 'filter-decide parameter with value nil to indicate that unification is
needed (step 17).

In the case of U-filtering U-SIGN1 against U-SIGN2¢, the pattern-matching of the
two signatures keeps going smoothly until step 14. At step 15, however, the value
for the slot rein is different in the two U-signs, namely hello and goodbye. Such a
discrepancy is detected by the U-filter, so that a "filter-decide value true is returned
to the parser to indicate that unification is unnecessary.

EXPERIMENTAL RESULTS

To test the U-filter an HPSG-based Japanese grammar (JPSG?) that covers diverse,
important linguistic phenomena in conversational Japanese was used. For example,
case adjunction, adjuncts, slash categories, co-ordination, control, WH-constructs,
interrogatives, pragmatics (politeness, hearer relations, speaker, etc.),”® and zero-
pronouns. The grammar graphs contain 2324 nodes converted from the path equa-
tions. This grammar is similar to those developed at ATR and the Carnegie Mellon
University.

The experiment used consisted of the parsing of 16 sentences taken from a
telephone conversation dialogue within the domain of conference registration. These

616 A. M. MAEDA, J.-I. AOE AND H. TOMABECHI

sentences vary from very short sentences, such as moshimoshi ‘hello’, to very long
sentences, such as kochirakarasochiranitourokuyoushiwoshikyuuniookuriitashimasu
‘[we] will send {polite} [you] a registration form from here {polite} to there {polite}’.
The sizes of the U-signs, in numbers of list elements, range between 4 and 50
elements; however, these numbers may significantly increase as the grammar used
covers even wider linguistic phenomena.

Results of the experiments are shown in Table II. Benchmarking was performed
against the QDS scheme because it is the fastest unification scheme developed so
far, to our knowledge. Non-destructive graph unification and quasi-destructive graph
unification are not directly compared here because proofs that there is a speed-up
gain of QDS over these two schemes exist elsewhere in the literature.2-14

In Table II, columns whose labels start with QDS show data corresponding to
the use of the QDS scheme alone; columns whose label starts with a UF show data
corresponding to the U-filter alone; columns whose label starts with a QDS-UF
contain data corresponding to QDS with UF included. All the UF timings consist
of the unification signature creation time for the input sentence, including unification
signature sorting, and the U-filtering of signatures. ‘QDS unif. num.’ shows the
total number of top level unifications QDS performed during the parse of each
sentence. Note that the number of unifications varies from just a few for simple
sentences, to several hundreds for long, complex sentences. ‘UF unif. num.’ displays
the number of QDS unifications that had to be performed when the U-filter was
used; note that in total less than half the number of unifications with QDS only

Table II. Comparison of the QDS scheme performance with and without the U-filter

Sentence QDS UF QDS UF UF QDS QDS-UF UF OQDS-UF/
number unif. unif. success pass effectiveness time time time QDS
num. num. rate rate (ms) (ms) (ms) ratio
1 6 3 0-50 0-50 1-00 39 38 9 0-97
2 101 39 0-34 0-39 0-87 888 595 172 0-67
3 18 7 0-22 0-38 0-58 97 77 21 0-79
4 71 44 0-55 0-62 0-89 768 501 126 0-65
5 305 156 0-37 0-51 0-73 2148 1779 470 0-82
6 59 24 0:27 041 0:66 329 239 74 072
7 6 3 0:50 0-50 1-00 39 38 9 0.97
8 81 43 0-51 0-53 0-96 948 661 175 0-69
9 480 226 0-37 0-47 0-79 4220 2460 746 0-58
10 555 283 0-41 0-51 0-80 4584 3532 763 0-77
11 109 57 0-45 0-52 0-87 948 723 201 0-76
12 428 175 0-33 0-41 0-80 4036 2199 660 0-54
13 559 268 0-39 0-48 0-81 5963 4747 1251 0:79
14 52 21 0-38 0-41 0-93 437 322 86 0-73
15 77 45 0-55 0-58 0-95 687 597 148 0-86
16 77 44 0-55 0-57 0-96 667 603 141 0-90
Average 0-42 0-48 0-87
Total 2984 1438 26,798 19,111 5052
Percentage 100 482 100 71-3

of Total

SIGNATURE-CHECK BASED UNIFICATION FILTER 617

were needed. Thus, empirically, the gain in speed by using the U-filter increases
as the percentage of unification failures in parses increases. ‘QDS success rate’
shows the ratio of successful top level unifications, which has an average of 0-42,
by QDS only. This average of success is rather high, considering that, in general,
natural language parses reach unification success rates of around 0-15. ‘UF pass
rate’ shows the fraction of graphs that the U-filter could not stop, and which
therefore had to be unified. The small difference between these two ratios indicates
that only a few of the graphs that pass the U-filter fail unification. ‘UF effectiveness’
shows the ratio of successful unifications with respect to U-filter, which has an
average of 0-87. This high average means that only a small number of the graphs
sent to unification result in failure. Actually, in the experiment, the number of top
level unifications QDS performed varied from between 6 and over 550 without the
U-filter, and between 6 and over 280 with the U-filter.

Also in Table 1I, ‘QDS time’ shows the total unification time for each sentence
oy QDS only. ‘QDS-UF time’ shows the time it took to unify the corresponding
sentences when QDS was preceded by the U-filter. ‘UF time’ shows the amount of
time consumed by the U-filter, including U-sign creation for the input sentence.*
QDS-UF was executed in around 71 per cent of the execution time for QDS alone.
The last column in Table II, ‘QDS-UF/QDS ratio,” shows the timing ratio between
‘QDS time’ and ‘QDS-UF time’ for each sentence, which ranged between 0-54 in
the worst case and up to 0-97 in the best case. Provided that the average success
rate in the experiment was around 42 per cent, it is foreseeable that if the failure
rate and the number of unifications increase significantly, with small change in the
U-filter effectiveness, then the resulting speed-up would be higher.

A time comparison chart of QDS with and without the U-filter for the 16-sentence
telephone conversation is displayed in Figure 11 (note the logarithmic scale on the
vertical axis). ‘QDS’ depicts the unification time by QDS only, ‘QDS-UF’ depicts
the unification time it takes to unify the conversation when the U-filter is used, and
‘UF depicts the U-filtering time only, including signature creation and sorting. The
positions of the symbols for each timing line (diamonds, stars and thetas) represent
the location for each one of the 16 sentences analysed, displayed according to the
number of unifications performed by QDS only. Two sentences required only six
‘mification operations each by QDS only, namely moshimoshi, ‘hello’ and iie, ‘no’:
whereas one sentence required 559 unification operations, namely wakaranaitengago-
zaimashitarawa takushidoumoniitsudemookikikudasai, ‘If there is {polite} anything
[you] do not understand, please {polite} ask me {polite} anytime’. As the number
of unifications performed increases (horizontal axis) execution time increases
(vertical axis) linearly. Note also that as the number of unifications increases, the gap
between QDS and QDS-UF increases. This behaviour takes place simply because,
typically, as the number of unifications to be performed increases, the number of
unification failures also increases; and since the U-filter stops the majority of unifi-
cation failures in a short time span, a higher speed-up is obtained. UF alone is
significantly faster than QDS and QDS-UF, showing that all graphs that do not
pass U-filtering are discarded faster than through traditional unification failure.
Within UF, creation and sorting of the U-sign for the input sentences in the
experiment consumed between 3 and 12 ms, with an average of around 5 ms.

* Includes also signature sorting.

618 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

8,000

¢ QDS
* QDS-UF
8 UF

TIME [ms]

6 10 100 600
NUMBER OF UNIFICATIONS

Figure 11. Time comparison chart between QDS and QDS-UF, and UF timing

CONCLUSIONS

Unification is, by far, the most costly operation in unification-based grammar parsing.
A great disadvantage of unification is that the vast majority of unifications performed
result in failure; a waste in processing time. In this paper, an efficient method for
the treatment of unification failures has been proposed, namely the U-filter, which
determines if two graphs do not unify in significantly less time than it would take
actual unification methods to do so. Structures that pass U-filtering must be unified
in the traditional way, and may or may not unify. Therefore, the U-filter must offer
an effectiveness and processing speed that, combined with unification methods,
reduces the total unification time significantly. The U-filter scheme consists of adding
to the data structure of a graph, or f-structure, a slot containing a unification
signature for that node; and using such a signature to determine unification failure
even before unification itself takes place.

Since the U-filter is unification independent it can be implemented under any
known unification scheme. In addition, its simplificity makes it easy to implement
in diverse environments as well as easily adaptable to variations. The amount of
extra storage needed for U-signs is very small and the overload for creation and
sorting of the input sentence is immediately compensated for by the U-filtering
timing itself.

The slowest part of the U-filter is U-sign sorting, so a schema that tackles this
problem is needed. Although no case in which the U-filter ran slower than unification
alone existed in the experiment, it is possible that, for parses with a low percentage
of unification failures, less than 40 per cent, the U-filter may sometimes run slightly

SIGNATURE-CHECK BASED UNIFICATION FILTER 619

slower than unification alone. The U-filter proposed here works efficiently for
relatively small signatures, of around 50 elements; however, an empirical observation
is that efficiency may be affected for large signatures. A vector array space based
unification filter may be a solution for this problem and is being considered for
future development. A vector space array consists of a vector data structure, a
matrix, in which the elements that conform to the signature are stored. Since the
access of elements in a vector is constant, then a unification filter based on this
approach should perform filtering in less time than using lists. The development of
more efficient representations of signatures is desirable. A routine that puts the
head constituent on top of the corresponding grammar rules in unification-based
grammar parsing systems is also desirable. This would avoid grammar designers
having the cumbersome task of doing so.

APPENDIX I: COMMON LISP CODE FOR U-SIGN CREATION

317 CREATE-STGN

; that
(declare (type dgnode dg)) . .
(let ((awadg (DGNODE-arc-list dg)) (sign nil) (signature nil))
(declare (type dgnode aipdg)) :
(cond ((null auxdg) nil)
(t (dolist (subdg aunxdg)
(setq sign (get-signl (cdr subdg))) | .
(cond ((and (not (mall sign)) (listp sign) (atan (car sign)))
({mﬂebqsimm)(lm (append (list (car subdg)) (list sign)))))
(setq sign (list (append (list (car subdg)) sign))))
(t (setq sign (list (append (list (car subdg)) (list sign))))))
_(setq signature (append signature sign)))
signature))))

type dgnode dg) (type list sign))
(let ((awcdg (list dg)) (mubsign nil))
{ (type dgnode audg))
(cond ((ATOMICNODR-p o)
(sety mign anxdg))
(LEAPNOLR-p dg)
(nil))
{t (dolist (subdg auxdg)
((type dgnode subdg))
(let ((subdg-param (cdr subdg)))
(declare (type dgnode)
(cond ((COMPLEXNIDE-p aram)
(petq subsign (get-sign2 subdg))
(cond ((mall sign)]
(setg sign (list subeign)))
((listp (car sign)) =
(metq sign (append sign (list subsign
(t (setq sign (append (list sign) (list subeign))))))
(t (eetqg (get-eighl (cdr subdg)
cond ((mull subsign) ,

((listp (car))

(setq sign (append sign (list (list (car subdg))))})

(mm (append (list sign) (list (list (car subdg))))))))
((listp)

620 A. M. MAEDA, J.-1. AOE AND H. TOMABECHI

(append sign (list (car subdg)) (list subaign

(setq sign 1))
(t (setg mign (append sign (list (append (list (car subdg;;

(list subsign)))
PIN))) sign)
33 GEI-SIGR
dafun get-sign2 (dg)
; &g «= the graph to be U-Filtered
7 sign e« the partial result in the generation of sign
(declare (type dgnode dg))
(1et ((sign nil))
(oond (l(.!;ll}l dg)
(t (wetq sign (get-signl (cdr dg)))
(cond ((and (listp sign) (atcam (car sign)))
(:mmmmfw (list (car dg)) (list Bign))))
(eetq sign (append (list (car dg)) sign)))
sion))(;:)(-e'«a sign (append (list (car dg)) (list sig)))))

337 SORT SIGRTURE
(defun eoxt-signature (signature)
(q;&mﬁ?ﬁiﬂ ture #'string-lessp tkey #'car))
gna B car
(dolist' (subeign signature
(cond ((and (= (length mign) 1) (atam (car- subsign)))

((and (= (length subsign) 2) (atem (cadr subeign)))
subsign)

(t (setf (odr subsign) (aon—aigmmre (cdr spbsign)))))))
_(t signature))
signature)

APPENDIX II: COMMON LISP CODE FOR THE U-FILTER

33 WNIFICATION FILTER
(defun wnification-filter -(signaturel signature?)
{catch 'FILTER-PASS (u-filterl signaturel signature2)))

333 U-FILTERL
{dafun u-filterl (signaturel signature2)
(let ((signheadl (first sigmhmel)) (3iglhead2 (firet signature?))
(cont(i ((equall(éust s;gmeadl}”fixst slgtegdz)) m
(cond ((wt. (or {mll (rest signheadl)) (mull (rest signhead?)))
(catch 'U-FILTER2-STCP (u-filter2 (rest signheadl) mtsigmeuizm))
{cond ((cr: (null signtaill) (mll ugxt:ulZ)
mm-mcnn

(t (u—ﬁl‘berl sig'mulZ))))
(t (cond ((uﬂ (m.u aiqxwll) (mll signtail?))

(t tiple-vnhn—eebq nigmtnel signature2) (gab-mt—mtd;siganuel s.lgatumz))
(caﬂ ((or (mald signtmel) ml.lsigm:\n:ez
(throw ‘FIUTER-DECIDE 333 wnification needed

nil))
{t (u-filterl signaturel smtmeZ)))))))))‘

53 wmificati 5

PSR P e

~l SN

SIGNATURE-CHECK BASED UNIFICATION FILTER 621

(t (throw ‘FILTER-DECIIE t)))) | . . 73; unification not needed
((and (null (third signheadl)) (mull (third signhead?)))
{cond ((or (mull (rest signheadl)) (mull (rest signhead2)))
(throw 'U-FILTER2-STCP t))
((and (equal (fixst signheadl) (first signhead?))
(not (equal (seccnd gignheadl) (second signhead?})))
‘FILTER-DECILE t

(throw) X
(t (u-filter2 (rest signheadl) (rest signhead2)))))

(t (cond ((not (equal (first signheadl) (first pignhead?)))
. throw 'U-FILTER2-STOP t))

:3; unification not needed

((atcm (£irset signheadl))
(u-filterl (rest signheadl) (rest sgignhead?)))
(t (u-filterl

)
(u-filter2 (rest signaturel) (reet signature2))))))))

s37 GET-NEXT-MATCH ian2)
(defun get-next-match (signl sign?
(let ((lisl (first s:lgll)) (lis2 (firet sign2)) (auxl nil) (aux2 nil))
{cond ((equal (féxst 1isl) (g:l.'mt (first (rest sign2))))

(values mignl (rest sign?)))
((equal (first (first (rest signl))) (first 1is2))
(values (rest signl) sign2))
((or (mull lisl) (mall 1is2))
(values signl sign2)) . .
(t (multiple-valve-getq (auxl aux2) (get-next-match signl (rest sign2)))

(émtltipledvahn—eetq (a1 ax2) (get-next-match (rest signl) sign2)))
(values auxl aux2)))))

REFERENCES

. J. Earley, ‘An efficient context-free parsing algorithm’, Commun. ACM, 13(2), 94-102 (1970).
. M. Tomita, Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems, Kluwer

Academic, 1986.

. T. Guniji, Japanese Phrase Structure Grammar, D. Reidel, Dordrecht, 1987.
. G. Gazdar, G. Pullum and 1. Sag, Generalized Phrase Structure Grammar, Harvard University

Press, 1985.

. C. Pollard and 1. Sag, Information-based Syntax and Semantics, Vol. 1, CSLI, 1987.
. K. Kogure, ‘Strategic lazy incremental copy graph unification’, Proc. COLING-90, 1990.
. A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-

Wesley, 1986.

. F. Pereira, ‘A structure sharing representation for unification-based grammar formalisms’, Proc.

ACL-85, 1985, pp. 137-144.

. L. Karttunen, ‘D-PATR: a development environment for unification-based grammars’, Proc.

COLING-86, 1986.

. D. Wroblewski, ‘Nondestructive graph unification’, Proc. AAAI-87, 1987, pp. 582-587.
. M. C. Emele, ‘Unification with lazy non-redundant copying’, Proc. ACL-91, 1991, pp. 323-330.
. H. Tomabechi, ‘Quasi-destructive graph unification’, Proc. ACL-91, 1991, pp. 315-322.
. H. Tomabechi, ‘Efficient unification for natural language’, Ph.D. Thesis, Carnegie Mellon Univer-

sity, Program in Computational Linguistics, 1993.

. H. Tomabechi, ‘Quasi-destructive graph unification with structure sharing’, Pro. COLING-92,

1992.

. P. A. Larson, ‘A method for speeding up text retrieval’, Proc ACM SIGMOD-83, 1983.
. S. Christodoulakis and C. Faloutsos, ‘Design considerations for a message file server’, IEEE

Trans. Softw. Eng., SE-10(2), 201-210 (1984).

. M. C. Harrison, ‘Implementation of the substring test by hashing’, Comm. ACM, 14(12), 777-779

(1971).

" A. V. Aho and M. J. Corasick, ‘Efficient string matching: an aid to bibliographic research’,

Comm. ACM 18(6), 333-340 (1975).

622 A. M. MAEDA, J.-I. AOE AND H. TOMABECHI

19. J. W. Hunt and T. G. Szymanski, ‘A fast algorithm for computing longest common subsequences’,

Comm. ACM, 20(5), 350-353 (1977).
20. K. Yoshimoto and K. Logure, ‘Japanese sentence analysis by means of phrase structure grammar’,

ATR Technical Report, TR-1-0049, 1989,

