Return-Path: <jgc@NL.CS.CMU.EDU>

Date: Fri, 21 May 93 17:44:36 EDT

From: Jaime Carbonell <jgc@NL.CS.CMU.EDU>

To: Hideto Tomabechi <tomabech@j-aoce.is.tokushima-u.ac.jp>
Subject: Re: my thesis

In-Reply-To: Your message of Fri, 23 Apr 93 17:24:50 JST
Sender: jgc@NL.CS.CMU.EDU

Hideto,

I received the new copy of your thesis manuscript. The printing was
much clearer. I’ve sent it to Kluwer Publishers in Boston with a
recommendation (they will still solicit reviews, of course). The
editor in charge is [

—-Jaime

PS: They had asked me what you could to broaden the market for your
contemplated boock and I though of:
1. Add an Index (they’ll ask anyway for this)

2., Have someone well known in Parsing or Unification write a short Foreward
3. Add a section in chapter 1 contrasting unification=based NLP with other
(earlier) approaches -~ keeping this short, but for those readers who

don't already known unification netgids,

Contents

1 Foundations

1.3 Four Types of Feature Structures

...........................

1.4 Generalization and Unification

1.5 Some Formal Properties of eature Structures

1.6 Reentrancy

.......................................

1.7 Extention and Subsumption

1.8 Unification and Generalization Revisited

2 Graph Unification in Natural Language

2.1 Feature Structure Graphs

2.2 The Nature of Graph Unification

...........................

2.3 Unification and Parsing

3 Past Representative Methods

3.1 Pereira’s method

3.2 Karttunen’s method

3.3 Wroblewski’s methodo oo 49

Ao Kogure's Method o0 0 000 oo 55
3.5 Emele’s Method . . o o o 00 oo 58

4 Quasi-Destructive Graph Unification 64
4.1 Introductiono oo 64
4.2 The Quasi-Destructive Graph Unification Algorithm 66
4.3 Discussion . .o 78

5 Quasi-Destructive Graph Unification with Structure-Sharing 85
5.1 Introduction . . oo oL oo 85
5.2 Quasi-Destructive Graph Unification with Structure-Sharing 87
5.3 Discussion oL 92

6 Empirical Results 100
. 6.1 Comparison using actual grammar L 0 0 L 100
6.2 Comparison using a simulated grammar 105

7 Concluding Remarks 117

Preface

From theoretical linguistics to computational models of natural language, unification-hased
processing has become a central methodology in many research efforts. In theoretical linguis-
tics. unification-based formalism has become one standard form of representation; many the-
ories such as LFG ([Bresnan and Kaplan, 1982]), HPSG ([Pollard and Sag, 1987]), and JPSG
([Gunji, 1987]) use feature structure and unification as the base of constraint postulations. In
computational linguistics, unification is used as the central constraint processing mechanism
during parsing based upon the unification-based grammar analyses. In artificial intelligence,
unification-based natural language is often used as an integral part of inference and learning
mechanisms. Recent efforts in massively parallel artificial intelligence have also demonstrated
the strength of graph unification as a uniform constraint processing mechanism for natural
language in a massively parallel environment.

Despite the popularity of unification-based processing, graph unification, which is the com-
putational method of unification-based processing, has remained a bottleneck of the unification-
based systems. For example, in unification-based grammar parsing using parsing algorithms
such as Earley’s algorithm and Tomita’s algorithm, unification operations often consume 85 to

95 percent of the total cpu time devoted to a parse. In one large-scale unification-based spoken

language parser!

, sometimes 98 percent of the elapsed time is calculated to be devoted to uni-
fication operation alone ([Kogure, 1990]). Furthermore, the number of unification operations
tends to grow as the grammar gets larger and more complicated. Thus, an unavoidable paradox

is that when the natural language system gets larger and the coverage of linguistic phenomena

is increased as an attempt to bring performance to a practical level, the number of unification

“'ATR’s HPSG-based spoken Japanese analysis system.

operations increases rapidly and the performance of the systems degrades to an impractical
level. Thus an availability of efficient graph unification is of paramount importance both to
theoretical natural language research as well as to practical natural language systems.

Overall parsing efliciency is crucial when building or experimenting with both practical
and experimental natural language systems. For realtime practical systems, parsing speed is a
prerequisite. For theoretical experimentation, the efliciency of hypothesis testing depends on
the speed of constraint processing. In the modern linguistic framework, most parsing systems
cousist of two basic constraint processing mechanisms: 1) context-free parsing algorithms and
2) graph-unification algorithms. This thesis focuses on the efficiency gain of graph-unification
algorithms. Given that most of the parsing time is consumed by graph-unification in large-scale
NL systems, the benefit of improving graph-unification algorithms seems apparent.

The Center for Machine Translation of Carnegie Mellon University provided me with both
the environment and the funding for pursuing my Ph.D. research at Carnegie Mellon University.
The Laboratory for Computational Linguistics of Carnegie Mellon University was the base
of the theoretical exploration of unification-based linguistic processing. Masaru Tomita was
the chairman of my committee and provided me with everything I needed for pursuing my
goals at Carnegie Mellon University, including the thesis topic. Jaime Carbonell, director
of Center for Machine Translation and also one of my committee members, deserves many
thanks for his support, advice and encouragement throughout my days at Carnegie Mellon
University. Without his strong support, I would not have been able to continue my research at
Carnegie Mellon. Also, without Tommy and Jaime, I would not have joined Carnegie Mellon
University in the first place. David Evans, my advisor and also the director of the Laboratory for
(ﬁ)ompu@tional Linguistics and of the Ph.D. program in Computational Linguistics, supported

me throughout my graduate student years and also provided me with linguistic and philosophical

insights into natural language. Alex Waibel, also my advisor, provided me with an excellent
opportunity to work on spoken language input for the parsing systems. He is the head of the
JUNUS pro_jo("t which is the CMU side of the Japan/US/German trilateral video-interpreting-
Lelephoqy project which uses the unification algorithm described in this thesis. He has also
contributed greatly to my research in the neural net frameworks which is not covered in this
thesis. Junichi Tsujii, professor at UMIST (University of Manchester Institute of Science and
Technology, U.K.) and the only non-CMU member of my committee, has been providing me with
new insights for natural language and machine translation for almost ten years. Carl Pollard,
a former faculty member in the (_lomputat‘ional Linguistics Program, my teacher of HPSG, and
my advisor for my master’s level thesis, originally introduced me to unification-based linguistics.
Bob Carpenter and Rich Thomason were among other faculty members who gave me useful
comments and support when I needed them. I wish also to thank Sergei Nirenburg, Lori Levin,
Eric Nyberg, Teruko Mitamura, and Todd Kaufmann at the Center for Machine Translation
for all the help and advice they gave me while I was at the Center. Radha Rz;o, the Business
Manager of the Center, always handled my last minute requests with generosity, as did current
and the past secretaries of the Center, namely, Cerise Josephs, Joan Maddama, and Barbara
Moore. The former and the current members of the Laboratory for Computational Linguistics
and the Department of Philosophy also contributed greatly to the research contained in this
thesis. Among them are Ted Gibson, Alex Franz, Margalit Zabludowski, Sondra Ahlen, Marion
Kee, and Renee Schafer. Important parts of the thesis research were conducted during the
two periods when I was a Visiting Research Scientist at ATR (Advanced Telecommunication
Research) Interpreting Telephony Research Laboratories in Kyoto, Japan twice (10 and 8 month
stays in 1990 and 1991). Akira Kurematsu, Tsuyoshi Morimoto, Hitoshi lida, Kiyoshi Kogure,

Osamu Furuse, Susumu Kato, Masaaki Nagata, Toshiyuki Takezawa, Kenji Kita, (ienichiro

Kikui, Toshihisa Tashiro, Kazumi Ohkura are amoung the researchers at ATR who contributed
significantly to this work, -

Makoto Takahashi, Hidehiko Matsuo, and Kyoko Sagi, of Toyo Information Systems worked
with researchers at ATR and did their fully separate and independent implementations of my
algorithms for ATR’s large scale speech-to-speech translation systems (SLTRANS and ASURA).
They have provided me with invaluable feedback for developing the later versions of my al-
gorithms. Among their contributions were extremely detailed experimental results on the al-
gorithms’ behaviour under different environments (memory management, data structures, GC
methods/timings, number of function calls, different parsers, different rule granularities, etc.)
and comparisons with other unification algorithms which were conducted for almost two years
using ATR’s grammar (probably the largest Japanese grammar ever developed). Their test
results confirmed my smaller scale experiments based on my implementations which are re-
ported in this thesis. Marie Boyle of the University of Tuebingen, Peter Neuhaus of Universitat
Karlsruhe, and graduate students at Tokushima University are among other researchers who
independently implemented the early versious of my algorithms and provided me with many
useful and important suggestions. I am also indebted to the members of ICOT (Institute for
New Generation Computer Technology) Natural Language Group for useful discussions, espe-
cially in the framework of unification and counstraint-based natural language processing. Satoshi
Tojo of Mitsubishi Research Institute, Hiroaki Kitano of NEC, Koiti Takeda of IBM, Akihiro
Hirai, formerly with Hitachi, Hidefumi Sawai and Toru Matsuda of Ricoh, and Tsuyosi Kitani
of NTT Data Communications Systems are among the members of the industrial affiliate pro-
gram of the Center for Machine Translation who contributed greatly to the research contained
in this thesis. Finally, special thanks to the following professors and researchers in Japan for

their suggestions and help: Makoto Nagao, Hozumi Tanaka, Hidetoshi Shirai, Yuji Matsumoto,

Jun-ichi Nakamura, Koiti Hasida, Jun-ichi Aoe, Takako Fujioka, and Katashi Nagao. Mario
Tokoro, Eiichi Osawa, and Katashi Nagao of Sony Computer Science Laboratories provided me
with the environment for preparing the later versions of this thesis as well as an opportunity
to test my algorithms on their multimodal systems. [originally came to the United States as
a ulbright Scholar in 1985, Thanks are due to the members of the Fulbright Committee and
Senator Fulbright for giving me the opportunity to pursue my graduate research in the United
States. .(first at Yale and then at CMU). Roger Schank, Christopher Riesbeck, and Lawrence
Birnbaum were among my first teachers of AI/NLP. Finally, David Rockefeller, Jr., Richard
Vowell, Jotaro rf&kap;i, Koyata Hosokawa, and Kiyoaki Hara are among the people outside of
the natural language community who contributed greatly to my stay in the United States.
Some parts of this thesis were written while I was visiting the Department of Environmental
Information of Keio University and while I was a member of the faculty in the Department of
Information Science and Intelligent Systems of Tokushima University. Kazuhiko Tsuda, Alfredo
Maeda, Hideki Mima, Koiti Iriguchi, and Akiko Kita of Tokushima University and Lonnie Bar-
tusis, Yukiko Uehara and Imari Karasawa of Carnegie Mellon University were extremely helpful

in preparing the final version of this thesis.

Chapter 1

Foundations

1.1 Introduction

A variety of grammatical formalisms have been proposed historically in computational linguis-
tics, natural language processing, and artificial intelligence to capture the phenomena called
‘language’. Kay proposed Functional Girammar and Functional Unification Grammar (FUG,
(Kay, 1984]) motivated by the notion of functional description of language. Bresnan and Kaplan
developed the Lexical Functional Grammar (LFG, [Bresnan and Kaplan, 19%2]) based on the
framework of lexically-oriented linguistics. In the aritificial intelligence community, Definite
Clause Grammar (DCG, [Pereira and Warren, 1980]) was developed by Pereira and Warren
in the logic programming framework. Logic programming and DCG later became the base of
natural language research efforts in the Japanese fifth generation computer research (ICOT).
Gazdar developed Generalized Phrase Structure Grammar (GPSG, [Gazdar, et al, 1985]) in
the nontransformational model of linguistic analysis. Pollard and Sag developed Head-driven
Phrase Structure Grammar (HPSG, [Pollard and Sag, 1987]) in the similar nontransformational

framework centered around the notion of the linguistic head of a phrase. Gunji developed the

Japanese Phrase Structure Grammar (JPSG, [Gunji, 1987]), which is a Japanese cousin of
HPSGL JPSG later became the ('v.nl;ml linguistic processing framework in the Japanese inter-
preting Lflp[)h(;)ny research elforts (ATR).

In the more computational and implementational aspects, PATR-II ([Shieber, ¢t al, 1983))
was developed at the SRI Al Center as a theory-neutral simple and mathematically well-founded
tool for natural language processing. At Carnegie Mellon University, to address the inefficiency
of unification algorithms, pseudo unification and Pseudo Unification Girammar were developed
as a part of machine translation research ([Tomita and Knight, 1987]).

All these grammatical formalisms (at least the modern versions of them) use feature struc-
ture as objects for capturing linguistic objects and use unification as the central constraint
processing mechanism. In this chapter we would like to review both basic and formal proper-

ties of feature structures and unification.

1.2 Feature Structures

Despite the variety of analysis captured in modern theoretical and computational models of
language, the so-called feature structure has been accepted as the common object for repre-
sentation. Pollard and Sag explain, “Instead of the NASA Physicists’ Euclidean spaces and
differential equations, though, the formal object of choice in information-based linguistics are
things known as feature structures”. A feature structure is a structured object that represents
informational content by specifying a set of features and their values pairs. Feature structures
provide partial information about the information-bearing entities such as lingllistic objects. In
other words, feature structures are partial descriptions of things that are captured in different

theories of language. Formally, feature structures can be understood as partial functions from

10

Jeatures to their valucs where the underlying domain' of the partial functions is provided re-
cursively. Conventionally, feature structures are represented using the matrices of feature value

pairs. I'or example. a feature structure representing the linguistic object for a female professor

named Madoka may be represented as helow.

name Madoka

ser Jemale

occupation professor

For the sake of economy of type-setting as well as of consistency with the sample feature

structures in the appendix taken from the actual computer outputs, we also represent the same

feature structure as below in this thesis.

[[name madokal
[sex female]
[occupation professor]]

which can also be represented graphically as:

female professor madoka

Figure 1-1: Graphical Representation of a Feature Structure

Since we will be representing feature structures in any of the above three ways in this thesis

Y

'I.e., As originally defined by Russell for domain of relations.

I

we will be using the terms features, labels, and labels on the ares interchangeably.
A fundamental property of feature structures is their potential for hierarchiality ([Pollard
and Sag, 1987]). Thus, the value of a feature itself may be another feature structure embedded

within. For example, below is a [eature structure providing a partial description of a linguistic

entity for a third person singular feminine noun:

category N

number singular

agreement person third

gender feminine

L P B

Or in our alternate notation:

[[category N]

[agreement [[number singular]
[person third]
[gender feminine]]]]

Which can be graphically represented as Figure 1-2,

Feature structures can be understood as partial functions mapping features to values. For
example, in the example for Madoka provided above, the feature structure defines the mapping
of the feature name to the value madoka, of sex to the value female, and of occupation to
professor. The partial descriptions by feature structures can be understood as “descriptions
participating in a relationship of partiality with respect to each other” ([Pereira and Shieber,

1984]). Formally, feature structures can be defined as below:

Definition 1.2.1 (Feature Structures) Let F be a possibly infinite set of features and C a
possibly infinite set of atomic values. We first define special feature structures {T, Ly T

12

singular third feminine
Figure 1-2: A third person singular feminin noun entity

represents “no information” and L represents “inconsistent information”. The set T of feature

structurcs can be defined by:

[= C} ;u{L}
i=0
The set T'; is defined recursively such that
Fo=CU{T}
Fori> [, Ty ={yly: F2 16 ['v} where Dom(vy) € P'(F).
k=0

Here Dom(y) denotes domain of the partial function v* and P'(F) denotes a non-empty power

set’ of F and L notates partial mappings.

This way, the features (4, ...,/,,) of a feature structure v are mapped to the values (v({1),...,7({n))
for which the feature structure, as a partial function, is defined.
NoTaTioN. Following Pereira’s notation ([Pereira, 1985), we represent the value of the

feature [; of a feature structure v, i.e., v({;) by v/i;.

Recall that in set theory, domain of a partial function :A — B is the set {ale € A and f(a) € B}. Also
image of {, written Im(f) is the set {f(a}|e € Dom(f)}.
*Recall that power set of A is the set of all subsets of A. For example, if A={1,2,3}, power set of A is

{1,2,3},{1,2),{2,3},{1.3},{1},{2},{3}, and 0.

13

For example, y/category = N represents the feature structure provided above for the partial
description of a third person singular feminine noun.

NoTATION. Following the standard notation of set theory, we shall write Dom(7) to denote
the domain of the mappings from features to values for a feature structure 4. In other words
Dom(y) represents the set of features on the feature structure v. These features are not
recursive, i.e., only the highest features are elements of Dom(v). For example, Dom(7y) of the
feature structure provided previously for the description of a third person singular feminine
noun is {catcgory, agreement},

For embedded feature structures, we generalize the notion of features and introduce the
notion of path. A path is a sequence of features from the outermost feature structure of the
embedding to the feature of the innermost feature structure. In our vocabulary, it is a sequence
of features from the highest to the lowest in the feature structure hierarchy. For instance,
< agrecment, number > is a path for the sample feature structure provided above for a third
person singular feminine noun.

NOTATION. We generalize the notation v/l representing the value of the feature 1 of feature
structure v to apply to the path of features, written v/p. Therefore, given the path p € F*,
which is p =< l1,...,[;, > embedded in v € T, then v/p = (...((7(11))({2))...)(L,). For instance,
with the above feature structure for a third person singular feminine noun,

v/ < agreement, number >= singular,

1.3 Four Types of Feature Structures

We have four types of feature structures: atomic, complez, variables and inconsistency. Atomic
feature structures are feature structures with constant atomic values. Complex feature struc-

tures are feature structures which contain feature structures within. Thus, to be precise, only

14

complex feature structures can be viewed as partial functions from features to values. The
values of complex feature structures themselves are always feature structures (complex, atomic,
or variable). "Variables are the special feature structures with an empty domain. Variables are

also called Top in this thesis?

. Variables are the least informative feature structures indicating
no information at all. Inconsistency are those that indicate inconsistent information. The idea
behind inconsistency is that such feature structures represent more information than any fea-
ture structure possible. It indicates too much information to the extent that it is inconsistent.
Iconsistency is also called Bottom in this thesis. Care needs to be taken in reading Top and
Bottom, since due to historical reasons for looking at the hierarchy of information content, Top

are somtimes called Botfom in the literature (and vice versa).

NoTATION. We shall denote variables by either [] or T and inconsistency by L.

1.4 Generalization and Unification

We can define two classical operations on feature structures: generalization and unification.
Generalization is the operation to find a feature structure that contains only the information
that is common in two feature structures. When common paths contain conflicting information,
generalization introduces a variable and makes an abstraction. Unification is the operation to
find a feature structure that contains the information in both feature structures but no addi-
tional information. If inconsistency of information is found at any depth of the paths, unification
immediately returns inconsistency for the highest feature structure (the root feature structure).
When a unification returns inconsistcm’y,‘we say that the unification failed. This way, unifica-

tion is a operation to determine the consistency of information between two feature structures.

*Note that {Tomabechi, 1991a} and [Tomabechi, 1992] called it bottom instead of top.

Informally, if 7 is a feature structure (y € T'), generalization of v and T always returns T since
by definition no information is common between the two. Alternatively, unification of v and
T always returns v since by definition, y contains the information of both and nothing more.
(ienel'alizapir)n of two atomic feature structures is T if they are not the same. That is, it has
the property of making an abstraction by returning a variable for inconsistent information. If
they are the same then the genemlizn(ﬂdn is also the same. Unification of two atomic feature
structures are _L‘if they are not the same. If they are the same then unification is also the same.
Generalization of two complex feature structures is the feature structure only with paths that
are common to two feature structures and unification of two complex feature structures is the
one that contains both the unique paths and the common paths.

NOTATION. We shall denote generalization operation by [] (or U) and unification operation
by IT (or M) in this thesis.

More formally, generalization [[and unification [] operations on feature structures I' are
defined below: But first, it is useful to define the two operations Complementarcs and Inter-
.S‘cct(n‘(:.‘;" between feature structures. These operations were originally provided in [Pereira, 1985]

and are central to unification-based algorithms including the one we are proposing in this thesis.

Definition 1.4.1 (Complementarcs and Intersectarcs) For two feature structures y1,v, €
[, the following two operations are defined corresponding to the set-difference and set-intersection
operations on domains of the partial func;fions.

Complementarcs(yi,v2) = {(L,7) € 1 | 1 & Dom(v2)}

Intersectares(y,v2) = {(1,7) € 71 |l € Dom(v)}

Notation. We shall denote C'omplementarcs(yi,72) by 11 © 72 and Intersectarcs(y1,72)

by v1 < 72.

16

Clomplementares(yy,v,) is the set of mappings of v, from features to values with features
that exist in y; but not in ;. Since mappings are often represented by arcs, they are called
Cowmplementarcs. .[7L2‘,(.‘7‘H(’(’ﬁ(L’I‘(T.S’(’)’],’)’-2) is the set of mappings of 4q from features to values with
features that exist in hoth 1 and in v,. Note that values of Complementarcs and Intersectarcs

are sets of mappings (i.e., partial functions) and not domains.

Definition 1.4.2 (Generalization) Let I' be the set of feature structures as defined previ-
ously, then below is the definition of the generalization operation (1]):

[)¥7 el 70T =T

D)V €CV €\ {nbh, nllne =T

)y el, vy =~

/l) \‘/"/1,72 el \ {T,_L,}\C, \—/11 € [)07”‘(71 < ’)’2)7 (71 H72)11 = 7’1(1)1_[72([)

Definition 1.4.3 (Unification) Let I' be the set of feature structurcs as defined previously,
then below is the definition of the unification operation (]):
DYy el, 71T =7
Vel VvV eC\{nh, nllr =41
)Vyel, vy =7
4) ¥ € DT, L3NG,
if 3l € Dom(yi <1 v2), (D170 = L
then y1[]72 = L
else Yy € Dom(yy < 73),¥ly € Dom(vy, 6 711)

(viIT7v2)h =) T re(h) and (v TTv2)le = 72(l2)

Below is the example of unification and generalization:

17

1.
[[category N]
lagreement [[number singular]
(person third]1]]

2.
[[category N] .
(agreement [[number singular]
[gender femininel]]]

3. Unification of 1,2:
[[category N]
lagreement [[number singular]
[person third]
[gender feminine]]]]

4. Generalization of 1,2:
[[category NJ]
lagreement [[number singular]]]]

5.
[Lcategory N]
[agreement [[number plural]
[person third]]]]

6. Unification of 3,5
Inconsistency

7. Generalization of 3,5
[[category N]

[agreement [[number []]
[person third]]]]

1.5 Some Formal Properties of Feature Structures

From the definition of generalization and unification, we can easily see that unification and

generalization satisfy the usual formal laws of idempotency, commutativity, associativity and

absorption. However, distributivity is not satisfied.

18

Idempotent :
vallva =74
Yallva =7a
Commutative :
vallvs =vs 74
allve = 781174
Associative :
(vallvs) dve = vallvs Uve)

(vallve) [Tve = vall(ve[1ye)

Absorptive :
vall(vallve) = 74

Yall(vallve) = 7a

not Distributive :

Yal(vslve) = (vallve) [(va Ll ve)
Yalllve Uve) = (vallve) U(vallve)

Unification and generalization are not distributive since the generalization introduces
variables for inconsistent information and therefore, order of unification and generalization
changes the results. For example, Figure 1-3 is the example where distributive law does

not hold for unification and generalization.

Note that when [b n] and [b o] are generalized [b []] is returned. This ability to generalize
inconsistent information makes unification and generalization not distributive to each

other.

19

— ®
3

AlN(BUC) = (AMB)U (AN C)
—8 —0 0

| |
amt:{‘ a b c.
®
l m [=

I m n

U —

Il m n
| m

Figure 1-3: Unification and generalization are not distributive

However, since commutativity and associativity are satisfied, as long as unification is the
only operation on feature structures, the order of unification does not matter regardless of
the number of unifications performed on a set of feature structures. This is one important
reason that feature structures and unification are used as formal tools for representing
constraints in many linguistic the(n:ies, since constraints can be described declaratively

without worrying about the order in which feature structures are combined by unification.

20

lattice theoretic When two operations such as V and A are defined for some set £ and if
these two operations meet the laws of commutativity, associativity, and absorption, then

we know in set theoretic terms that:

l. aVb=1band a Ab=a have the same values;
2. if we define as ¢ < b then £ is a ordered set and forms a lattice.

3. Also a Vb and « A b are equivalent to join and meet operations on a lattice.

This way, from the properites we saw so far, we know that feature structures I forms
a lattice (< I]I, TT >) and that generalization is a join and that unification is a meet
operations on lattice of feature structures. Here, the naturally defined order for feature
structures corresponds to the order based upon how much information is contained in
the feature structures. By definition of our generalization and unification operations, the
waximum element of the lattice is T and the minimum is the L. In other words, more

general elements are put toward higher parts of the lattice.

1.6 Reentrancy

An additional characteristic of feature structures that is found useful in modern theoretical
and computational models of language is reentrancy. A reentrant feature structure contains
m.xother feature structure embedded within that is shared by two or more distinct paths within
the feature structure.

NOTATION. We say that the values of two paths are “the same” when the two values are
token identical. We use the notation =p for this relation. Thus, v,/p; =r Yy/p2 when they are

“the same”, i.e., when v./p1,7,/p; are actually the single v; € T

Definition 1.6.1 (Reentrancy) Distinct paths py,...,p,, (all of them in a single y € T') are

said to be reentrant iff v/py =r v/p2 =ry 0 =0 Y/ Pans

NOTATION. If paths pp,...,p, of a feature structure y are reentrant we shall denote the
1‘()@11t1';L116y DY [P1veeos Py

More informally, two or more distinct paths in the same feature structure are said to be
7'eentm7‘zt when they share “the same” valie. As an example, the feature structure below is not

reentrant:

I'igure 1-4: Non-reentrant feature structure

But the following is a reentrant feature structure:

Tokyo

Figure 1-5: A reentrant feature structure

In our bracketed notation, the non-reentrant feature structure is:

[[born Tokycl

22

(home Tokyo]l]

The non-reentrant feature structure above indicates the “similar value” but not the *same
value™. Thus, thlo above indicates the value Tokyo as the same type but not the same token.
More precisely, the value may or may not be of the same token (i.e., the values may indeed be
the “same”, but they are only guaranteed.to be “similar”).

The reentrant feature structure in our bracketted notation is:

[[born X01 Tokyo]
[home X01]]

Here, X01 shows that what follows it is reentrant with some other paths. If there is more
reentrancy, more reentracy marks X01,...,Xmn will be tagged before the values. The tagging is
valid only within one highest level feature structure (“highest” meaning the top level feature
structure of the embedding). Therefore, the values with the same tagging X01 in the distinct
feature structures do not indicate the same value.

We could also use the notation

born Tokyo
home

for represeniting the reentrancy.
Finally, below is an example of a reentrant feature structure with a complex value (embed-
ding) using the three alternate notations.

As a graphic figure:

23

singular third feminine

Figure 1-6: A complex reentrant feature structure

Using common notation found in linguistic literature:

- - ~ P

number singular

subject agreement person third

gender feminine

predicate agreement

and in our bracketted notation.

[[subject [[agreement X01 [[number singular]]
[person third]
[gender feminine]]]]
[predicate [[agreement X011]]]

The ability to represent reentrancy has been useful and used standardizedly in many lin-
guistic theories to capture phenomena such as agreement provided above. Also, by specifying
the value of certain paths, the equality relation between the paths is an important tool for
having different theoretical constraints interact. For example, an entity filling the position of

a syntactic subject may be reentrant for an entity filling the semantic agent position of the

feature structure.

24

1.7 Extention and Subsumption

“Some feature structures are more informative than others” v([Pollard and Sag, 1987]). As we
saw previously, there is a natural partial order defined for feature structures forming a lattice.
This ordering is based on the amount of informational content the feature structure carry.
Informally, a feature structure v, is considered more informative than vp if it is at least as
informative as yg by containing at least all paths in vg. Such a relation is called eztention and
it is said that v4 extends vp.

NOTATION. If 74 extends v than we shall denote the relation by T4 X V8.

Definition 1.7.1 (Extention Partial Order) The natural partial ordering < on T for
< I ILTT > can be precisely defined as below®:
Ve el, LX<k =<T,

2V eP\{L.T)H, LXy=xyZT,

{

3. va,78 € U are complez then v4 < vg iff
(@) Jor cach path < mq,...,m; > of yg, there is a path < ly,...,l; > of v4 such that
Yal <liyonly > 2 v/ <my,egmy > where | < k < 1,
(b) for cvery reentrancy [piy ..., prlyg of 75 there is a corresponding reentrancy [p;, ..., pulya

YA

The effect of the condition 3(b) above is that

[[born X01 Tokyo]
[Thome X01]]

extends (<)

"*This definition is essentially the dual of Pollard’s definjtion of C in [Pollard, 1934] except for the reentrancy
handling part.

25

[[born Tokyol
(home Tokyol]

This is so because the feature structure with the I'GQHtl‘ELI](‘.y. is more informative than the
one above without the reentrancy. In other words, a feature structure with “the same value”
exteuds the feature structure with “the similar value”. Because reentrancy is included in our
definition of <, the set < [, <> is not exactly the same as the lattice < IVILIT > which
we discussed previously, that is so because our original formulation of unification operation
provided at the beginning of the chapter did not take care of reentrancy. However, it is easy to
see that < I', X> is a lattice, given that it is closed for T and L (i.e, v, Vv, and 74 A vy exist
for any v,,7v, € [where V denotes join (least upper bound) and A denotes meet (greatest lower
bound) . We will also provide a framework for unification operation that handles reentrancy in
the later parts of this thesis. Then < I',]],T] > will be the same lattice as < T', <>.

Our (leﬁnitiop of extention makes it clear that < is a partial order. This is so because we
can see from our definition that for y4,vp € T, it follows that (1) y4 < 74; (2) 74 < 7B and
7B 274 = 74 =78 (3) 74 2 v and yp < y¢ = y4 <X ve. It is not a complete order,
however, since not every feature structure in I is in an extention relation.

The dual of the extention relation is the subsumption relation. 7,4 subsumes vp if 74 is less
informative than yg.

NOTATION. If 74 subsumes yp than we shall denote the relation by v4 C vg.

Definition 1.7.2 (Subsumption Partial Order) The partial ordering © on I' can be defined

as the dual of X, that is, for ya,vB € T, v4 C v iff v < 74.

Figure |-7 is a conceptual diagram of a lattice of feature structures. Note that [is put at
the top of the lattice. Therefore, the higher the location of the lattice, the less informative (or

more general) the feature structure becomes.

26

less informative
< o

extention subsumption NN
‘ in)

more informative

v

Figure 1-7: Lattice of Feature Structures

Below are the examples of the subsumption relation taken from [Shieber, 1986] (but using
our notational convention). The feature structures provided earlier subsume all the feature

structures provided later in these examples. In other words, the subsumption relation 1 £ 2 C

3C4LC5E 6 holds.

1.
0

2.
[[category N1]

3.
[[category N]
[agreement [[number singular]]]]

27

[[category NI
[agreement [[number singular]
[person third]]]]

5
[[category N]
(agreement [[number singular]]
[person third]]
[subject [[number singular]
(person third]]]]
6.
[[category N]
[agreement X01 [[number singular]]

[person third]]
[subject X01]]

1.8 Unification and Generalization Revisited

Unification is thc‘ﬂ. least informative feature structure which contains all the inforination from
both feature structures (but no additional information). By using the notion of extention
partial order, we can say that unification is the least informative feature structure
that extends the two feature structures. (That is, it is the greatest lower bound of two
feature structures with respect to the extention ordering <.) Thus, unification of two feature
structures vy and ;3 is the least informative feature structure 3 that v3 < 1 and y3 < ~4. Since
extention and subsumption are duals, unification can also be defined as the most informative
feature structure which is subsumed by two feature structures. That is, the unification operation
returns the most informative feature structure v; such that v; C 3 and v, C 7a.

Similarly, generalization can be defined using the notion of extention partial ordering. Gen-
eralization is the most informative feature structure that subsumes the two feature

structures. That is, v3 = 1 M v, if 3 is the most informative feature structure with which

28

¥3 C 91 and 3 C v, holds.
Note that by our definition of the subsumption relation, a reentrant feature structure extends

a non-reentrant counterpart with similar values. Therefore, the unification of fsl and fs2 in

Figure 1-8 is fs2.

fs2
fs1
a b a b
e
X X
X

fs (dgi M dg2)

X

Figure 1-8: Unification of same values with similar values

The important properties of the operations on feature structures are that unification always
adds information and generalization always subtracts information (unless two feature structures
are already in the subsumption relation). Because of the monotonic information combining na-
ture of unification, unification has been chosen as the central and often only operation on
feature structures in many theoretical and computational models of language. The linguistic
theories that use unification as the central (or only) method of capturing linguistic constraints
are collectively known as “unification-based” theories. (GPSG, LFG, FUG and HPS(G are some

of the well-known examples of unification-based theories. Below is the summary of the prop-

29

erties of unification which form the basis of formal representation of linguistic constraints in

unification-bhased theories.

Monotonicity Unification always adds information and never subtracts information. By def-
inition, the result of unification is always subsumed by the two input feature structures.
This property of unification is the reason that unification is used as the basic tool of

combining information in many linguistic theories.

Order Independency Since the unification operation meets the laws of idempotency, com-
mutativity, and associativity, the order of unification operations is unimportant. This
makes the feature structure and unification operation useful tools for capturing linguistic

constraints declaratively.

Undecidability The unification of two feature structures may be inconsistent (L). Two fea-
ture structures may contain incompatible information (incompatible paths). When the
unification of two feature structures is inconsistent, it is conventional to say that the
unification fails. We also say that the unification is undecided when it is L. Because
the unification may fail, the unification operation can be used as an apparatus to check

constraint satisfaction as well as to combine and propagate constraints.

We have seen that the usual formal laws of idempotency, commutativity, associativity, and
absorption hold on unification forming a lattice. However, one final note here is that as we have
seen before, feature structures are not dist‘ributive on unification and generalization. Therefore,
if the generalization operation is adopted as a part of a constraint checking mechanism, the
order of the applying generalization and unification would become important. This is part of

the reason that generalization is not commonly used in computational models of language. ©

®Disjunctive operations however, would be distributive with unification forming a ditributive lattice with

30

unfication. For example, Pollard and Sag say about the distributive nature of unification and disjunction of
feature structures that the extention ordered lattice of feature structures form a distributive lattice, ie., v, V
{(v2lv3) = (mV72)U{(11Vy3) and yiU(v2Vy3) = {(viUy2)V(71Uv3). Thus many systems that use feature structures
use disjunctive feature structures. However, the feature structures in this thesis are not disjunctive. That is
because non-disjunctive unification algorithms can be extended into disjunctive ones by either 1) modifying the
algorithm itself, 2) opening the disjunctive feature structures into cross multiples, 3) treating the disjunctive part
and non-disjunctive part separately. The third method was developed by [Kasper, 1987] and our experiments
show that it is the best method for a large scale grammar. We have seen that the major portion of the unification
operation during a parse of a large-scale gramumar is occupied by processing the non-disjunctive part (normally
more than 95 percent) while very little is occupied by processing the disjunctive part (less than 4 percent or 50).
Thus, it makes sense to adopt Kasper’s method and process the disjunctive part separately instead of making
unification algorithms heavy by introducing the capability to processing disjunctive feature structures.

31

Chapter 2

Graph Unification in Natural

Language

2.1 Feature Structure Graphs

Feature structures were chosen as the formal objects for representation of linguistic entities in
modern theoretical and computational linguistic theories such as Functional Unification Gram-
mar (FUG [Kay, 1984]), Lexical Functional Grammar (LFG [Bresnan and Kaplan, 1982]),
(ieneralized Phrase Structure Grammar (GPSG [Gazdar, et al, 1985]) and Head-driven Phrase
Structure Grammar (HPSG [Pollard and Sag, 1987]) and are commonly known as feature struc-
tures wl;ich are feature-theoretic structures of feature/value pairs. For example, an HPS(-like

lexical entry for the word laughs may look like this:

[[PHON laughs]

[CAT [[HEAD [[MAJ verb]
[VFORM finite]
[AUX minus]
[INV minus]

32

(PRD minus]]]
[SUBCAT [[FIRST [[CAT [[HEAD [[MAJ noun]
[NFORM nom]
[PERS third]
(NUM sing]]]1]
[CONT [[ARG1 X01]]1]]
[REST end]]]11]
[CONT [[RELATION laugh]
[ARG1 X01]111]
By representing mappings captured by feature structures as arcs on nodes, directed graphs
are commonly used for both graphic and computational representation of feature structures. In
directed graph representations, features are represented as labels on the directed arcs and values

are represented as nodes. Generally the labeled directed graphs used to represent linguistic

feature structures have the following properties:

e Arcs represent features: Each feature in a feature structure is explicitly represented

by a corresponding arc in the graph representation of feature structures.
e Arcs are labelled: Arcs are labeled to represent feature labels.

* Arcs are unordered: The order of arcs in the same level of a feature structure graph
is irrelevant to the expressed content of the feature structure. Thus, the order of arcs

contained in the nodes has no significance. (That is, arc lists in the nodes are actually

sets, not lists) .

¢ Arcs are directed: Feature structures are partial functions mapping features to values.

Since this mapping is unidirectional, the arcs representing the mappings are directed.

¢ The number of arcs is not fixed: The number of mappings from features to values
captured by a feature structure can be finitely many. There is no fixed limit on the

number of arcs in a feature structure.

33

* Nodes represent feature values: A node represents either: 1) an atomic value 2)
a complex value or 3) a variable. Variables need to be represented specifically as nodes

v

(feature structure) since a variable may be shared by multiple paths (reentrancy).

e Graphs may contain convergence: A feature structure may be reentrant; therefore

a feature structure graph may contain a convergence.

* Graphs may contain cycles: A path in a feature structure may be cyclic either
because grammar allows for cyclicity or because the unification of two reentrant feature

structures created a cycle.

The last point about cyclicity requires some explanation. Qur definition of feature structure
in the previous chapter did not include the nature of cyclicity. In fact, most unification-based
theories assume feature structures to be acyclic. However, some grammar formalisms allow for
cyclicity in constraint graphs. The ATR grammar that we used for experiments for this thesis is
one of them. Also, it is often easier to represent some linguistic phenomena using cyclie feature
structures such as constraix;ts on relative clauses even with gramimatical formalisms that assume
no cyclicity. Finally, unification of two reentrant feature structures may result in a cyclic feature
structure even if the input grammar specifications did not have cyclic paths at all. Thus, it is
safe to assume that feature structures may be cyclic even if the grammadtical formalisin did not
assume cyclicity. Therefore, feature structures need to be represented as directed graphs (dgs)
and not as directed acyclic graphs (dags) if we would like to design a unification-based systems
with robust behaviour. In fact, our definition of extention and subsumption in the previous
chapter already included the possibility of cyclic feature structures. Hereafter in this thesis, we
assume feature structures to be directed graphs and not acyclic directed graphs.

Below is an example of grammatical rule entries taken from ATR’s grammar [Takahashi,

34

et al. 1992]. The first rule formalizes the subcategorization principle and the second tule

represents the adjunct (or COH) principle in JPSG. Although neither of the rules are cyclic

(only reentrant), a cyclic feature structure will result when these rules are combined (unified).

Given that these are very frequently used rules, it is important that natural language systems

using a grammar like this one accept cyclic feature structures and handle them efficiently.

1)

2)

<syn subcat> = <dtrs 2 syn subcat rest>
<dtrs 1 syn head coh> = <dtrs 2 syn sub cat first>

<dtrs 1 syn head coh> = <dtrs 2>

These path equations indicate the convention that paths equated by = point to the same

node (variable). That is, vo/ < syn subcat >= 75/ < ditrs 2 syn subeat rest >, etc. The

resulting graph of the unification of the rules looks as the following (taken from [Takahashi. et

al,

1992]):

d”s

rest

Figure 2-1: Grammatical rule with a cycle

2.2 The Nature of Graph Unification

While the unification operation has been popularly adopted as a basic tool in theoretical and
computational models of language, the design of an efficient unification mechanisms has not
been an easy task. Normally, unification is by far the most computationally expensive part
of natural language systems. For example, considering the time-efficiency problem alone, in
typical large-scale systems such as [Morimoto, ¢t al, 1990], 75 to 95 percent of parsing time is
occupied by unification alone. Also, designing an efficient unification operation that meets the
properties of feature structures listed in the previous section is not an easy task. Recall that
these properties include 1) order independence, 2) unfixed number of arcs, 3) convergence, and
4) cyclicity. Below are some of the essential criteria that a graph unification method for natural

language processing must meet:

¢ The input graphs should not be destroyed: The input graphs must be preserved
because constraints are represented by feature structures as rules that are unified against
the feature structures that are produced by input. Since rules are used many times, the
original graph representing the 1"ule needs to be preserved. Also, during the analysis.of the
input language, constituent graphs representing the current hypothesis of the constituency
are created. Since these constituent graphs are also applied many times against different
hypotheses, these graphs need to be preserved as well. Consequently, in most unification
algorithms, nodes are copied prior to or during unification causing a heavy overhead on

unification operations.

o Graphs may contain convergence and cycles: As discussed in the previous sections,
feature structures may be reentrant and even cyclic. As we have seen, the possibility of

reentrancy complicates the nature of the subsumption relation as well as introduces the

36

bi_dirm-tiomlity of the information flow. since different parts of a feature structure mnay
be connected by reentrant paths and since whatever happens in one reentrant path must
also be reflected in other reentrant paths. The difficulty of handling cyclicity is even more
problematic, since 1) cyclicity also changes the nature of the subsumption relation and
consequently the ﬁa,ture of unification; and 2) cyclicity may cause an infinite loop during
a unification. With respect to the problem of a loop: If we perform a vanilla ‘occur check’
to avoid the loop, this check would require a scan through the entire graph for one extra
pass; this can be very expensive if a graph is large. Therefore, an efficient method for

graph unification must have a built-in and cheap mechanism for handling cycles.

¢ Graphs may contain variables: Some feature structures are-variables. Often vari-
ables are introduced to capture the reentrant constraints on the equality of path desti-
nations. Such a construct is frequently used in grammatical specifications of phenomena
such as agreement. As we have seen in the previous chapter, variables ([},T) have peculiar
behaviour for subsumption (and therefore for unification). Again, correct and cheap han-

dling of such a behaviour is a basic requirement for an efficient graph unifiction method.

The difficulty of handling reentrancy, cycles, and variables becomes even more problematic
when they are combined. Below is an example taken from [Pollard and Sag, 1987] (with a

different notation).

dgi
[[a [[a X01]11]
(b X01]]

dg2
[[a Xx02]
(b [[a X023]1]]

dg3
[[a X01 [[a X02]1]
(b x02 [[a Xx011]1]]

The unification of dgl and dg2 will 1'e51‘11t in dg3. However, Pollard and Sag would not count
dg3 as a valid feature structure‘ because they define subsumption differently, and cyclicity is
not allowed in the graphs. Therefore, this unification would be counted as a “fail’ by them.

Let us examine the above three feature structures graphically. Below is the directed graph
representation of the three feature structures:

As we can see from the figures, clearly, dg3 extends both dgl and dg2, using our defini-
tion of extention/subsumption. Viewing dg3 as the least informative feature structure that is
subsumed by both dgl and dg2 seems perfectly reasonable. In fact, in the current frameworks
of unification-based processing, our definition of subsumption is often adopted and has been
proven useful in wmany systems (including CMU, ATR, and Tokushillna systems). Whether
cyclicity in the graphs is originally assumed or whether it is an avoi(lal)ie result of allowing for
reentrancy and of providing a definition of subsumption that covers reentrancy, the above uni-
fication result must naturally be accepted as a unification success. Otherwise, reentrancy is not
fully processed in unification-based systems. In other words, once a unification-based frame-
wprk adopts reentrancy and variables, it has no choice but to adopt cyclic feature structures in
order to handle reentrancy and variables adequately.

It should be easy to imagine that the design of a unification methodology that covers the
unification of dgl and dg2 to result in dg3 is not trivial. Once cyclicity is allowed for feature
structures, we can have a multiple loops in different places of a feature structure. Thus, it

is important that an efficient unification method provide natural and cheap functionalities for

'The recent versions of the HPS(: theory, however, also treat dg3 as the valid unification of dgl and dg2
(according to Bob Carpenter, personal communication).

38

a

b b
b a
dg2
a
a
o [a
@
[]
dg3
a
dg3
X01
' b a [xo1
a
a b [xoz

11
X02

Figure 2-2: Unification resulting in a cycle

algorithm described in this thesis is the ablility to handle cycles naturally.

2.3 Unification and Parsing

39

handling cycles adequately. We will see in Chapter 4 that one of the main advantages of the

Before discussing the actual unification algorithms, we would like to briefly review a repre-
sentative methology in unification-based natural language processing. At least three methods

are common in using unification during natural language processing. The first method is em-

ployed when linguistic theories such as HPSG are directly implemented. Lexically-oriented
theories such as HPSG assume no separate context-free rule for phrase structures. Phrase
structure rules are implicitly contained in subcategorization lists which are lexically stored.
Therefore, combined with universal principles such as the Head-Feature Principle ([Pollard and
Sag, 1987]), which are also represented through feature structures, parsing is performed purely
through gmph.uniﬁ(‘.ation [Franz, 1990]. The second method which is most popular ([Shieber,
et al, 1983),[Tomita and Carbonell, 1987],[Morimoto, ¢t al, 1990]) is employed when grammat-
ical theories such as LFG and GPSG, which assume context free rules, are adopted. Also,
some systems (such as [Morimoto, et al, 1990]) use this method for speed, although they adopt
lexically-oriented formalisms (such as HPSG) by extracting lexically-specified subcategoriza-
tion constraints as context-free rules. In these systems, context-free rules based upon major
grammatical categories (parts of speech) are augmented with unification-based constraints that
specify actual constraints for building up phrase structures. The third method is employed
when graph-based constraints are used in the conceptual memory-based recognition of natural
language inputs. In these systems (which often assume massively-parallel spreading activation
architectures) graphs are propagated in the network of semantic memory nodes to provide syn-
tactic constraint application while performing spreading activation-based conceptual memory
recognition. Here, we would like to examine the second method, which is the method adopted
in the majority of natural language systems. We will not discuss the first method in this thesis.
Because the first method has no separate control structure other than the unification operation
itself. We will not discuss the third method in this thesis either. (Please refer to [Tomabechi
and Levin, 1989], [Tomabe-chi, 1991b], [Tomabechi, 1991¢] for discussions of the third method.)

In the so-called augmented context-free parsers, grammar rules are provided to postulate

how major grammatical categories (phrase types) combine to create larger phrasal structures

40

through context free grammars (CFGs). But whereas a context-free grammar allows only a finite
number of predefined atomic phrase types or nonterminals, a unification-based (augmented)
context-free gramwmar implicitely deﬁneszulinﬁnhgrofxﬂnnsetypes([Perdra,1985b. A phrase
type is specified for type X0 by postulating the context free rule X0 = X1, ... ,Xn (where
Xl ..., Xn represent its constituents), which is augmeunted by equations specifying values for
x0/P1,...,.X0/Pn. The values for X0/P1, ..., X0/Pn may be atomic as well as complez specified

by Xm/Pm. Thus a rule entry may look as Figure 2-3.

X0 => X1,...,Xn

X0/P1 = al
X0/P2 = X1/P1
= Xm/Pm

X0/Pi

Figure 2-3: An augmented CFG rule entry

Here al is an atomic value and Xn/Pn represents the node at the end of Xn through the
path Pn. A sample rule entry using the commonly adopted PATR-II ([Shieber, et al, 1983])

notation for augmented context free rules looks follows:

X0 => X1 X2
<x0 cat> = VP
<x1 cat> =V

<x2 cat> = N

<x0 head> = <x1 head>

<x2 head case> = objective
<x1 head vtype> = transitive
<x0 cont> = <xl1 cont>

Figure 2-4: An augmented CFG rule using PATR-II notation

Here { Xn) specifies the paths.

41

Most implementations omit { Xn cat) = Cat and specify the major categories directly in
the context-free parts (e.g. VP = V N) so that parsing algorithms ([Earley, 1968], [Tomita,

19835], etc.) can be directly used on the context-free portion of the rule entries. Therefore, rules

in most systems look like Figure 2-5:

VP => VN

<x0 head> = <x1 head>

<x2 head case> = objective
<x1 head vtype> = transitive
<x0 cont> = <x1 cont>

Figure 2-5: a standard ACFG notation

The augmentation path equations are converted to graphs when the grammar is read into
the system. These graphs are stored along with the context-free rules. For example, the graph
provided below representing the path equation above is stored with the rule VP = V N.

Furthermore, lexical entries (i.e., terminal symbols) are augmented with path equations.
Augmentations are also converted into graphs when the grammar is read into the system.

Below is a sample lexical entry for the verb laughs based on the HPS(G framework.

V-><1augh s>

<x0 head vform> = finite

<x0 head aux> = minus

<x0 head inv> = minus

<x0 head prd> = minus

<x0 subcat first cat head nform> = nom
<x0 subcat first cat head pers> = third
<x0 subcat first cat head num> = sing
<x0 subcat first cont argl> = <x0 cont argl>
<x0 subcat rest> = end

<x0 cont relation> = laugh

0

Whenever a context free parser fires the rule VP = V N, (the subgraph of x0 of) the

42

case

objective

transitive

[]

Figure 2-6: An augmentation graph for VP = V N

constituent graph. which was stored along with the lexical entry (such as laughs) that fired
V. is unified with (the subgraph of) x1 in the augmentation, and the constituent graph for N
is unified with (the subgraph of) x2 in the augmentation. If unification fails, then the rule is
killed. If unification succeeds then (the subgraph of) x0 is the result of the rule application. If
VP is used subsequently (for example by a rule S = VP), then the x0 path of the result graph
will be unified with the rule augmentation graph.

This way, parsing of the augmented context free grammar continues by repeatedly firing rules
and unifying constituent gr;mphs with the rule augmentation graphs. Graph unification performs
the functions of 1) applying constraints (blocking unacceptable constituents and inapplicable

rules) 2) building the larger information contents by unifying two graphs and 3) propagating

information upward in the constituency (the bar levels [Jackendoff, 1977]). Everytime a rule is

43

fired, graph unifications between a rule and a constituent occurs for each Xn and therefore, the

number of unifications performed during a parse can be massive.

44

Chapter 3

Past Representative Methods

3.1 Pereira’s method

Pereira ([Pereira, 1985]) proposed a method of directed acyclic graph (dag) unification based
upon the notion of structure-sharing. The basic idea behind his scheme is that an original
dag ;md the result dag can share the information (structure) except for the information that
modified the original dag as a result of wiification. Therefore, a result graph is represented as

a combination of the original graph and the information that represents the changes that are

caused by unification.

e +

I skeleton | <== Pointer to the original dag structure
R e +

| | rerouting | <== forwarding pointer

+ environment H--merme————c—ee- +

|) | arc-binding | <== new arcs to be added to create result
R e L e +

Figure 3-1: Pereira’s Data Structure

In this scheme, a dag is represented by a skeleton and an environment. Skeleton represents

Chapter 3

Past Representative Methods

3.1 Pereira’s method

Pereira ([Pereira, 1985]) proposed a method of directed acyclic graph (dag) unification based
upon the notion of structure-sharing. The basic idea behind his scheme is that an original
dag and the result dag can share the information (structure) except for the information that
modified the original dag as a result of unification. Therefore, a result graph is represented as

a combination of the original graph and the information that represents the changes that are

caused by unification.

A e +

i skeleton | <== Pointer to the original dag structure

mm e R e e e +

| | rerouting | <== forwarding pointer

+ environment te-esemececeee——.. +

| | arc-binding | <== new arcs to be added to create result
B it o +

Tigure 3-1: Pereira’s Data Structure

In this scheme, a dag is represented by a skeleton and an environment. Skeleton represeuts

graph based upon dag2’s skeleton. This adding to the binding content of the environment is
performed-at all depths of recursion so that a result graph can be created (when necessary) by
looking at the dag2 nodes and referencing the environment. Tbhis way, 1o copies at all are made
in his method. Instead the result graphs are dynamically created when the graph is needed
later. Below is Pereira’s algorithm taken from [Pereira, 19%5] (stightly modified to make it

up-to-date):

[PEREIRA’S ALGORITHM |

FUNCTION unify (dagl-underef,dag2-underef);
dagl — dereference(dagl-underef);
dag? — dereference{dag2-underef);
IF (dagl =r dag2) THEN
return(dag2); -
ELSE IF (dagl =r Top) THEN
forward(dagl,dag2);?
return(dag?);
ELSE IF (dag2 =r Top) THEN
forward{dagl,dag2);
return(dagl);
ELSE IF (dagl and dag2 are atomic and the values are equal) THEN
forward(dagl,dag2);
return{dagl);
ELSE IF (dagl and dag2 are complex) THEN
shared — intersectarcs(dagl,dag?);
new «— complementarcs{dagl,dag2);
forward(dagl,dag2);
FOR EACH arc IN shared DO
unify (destination of
the shared arc for dagl,
destination of
the shared arc for dag2);
If all recursive calls returned successful THEN
put new in the arc-binding of dag? in €
return (dag2);
ELSE return L immediately
END;

This way, the structure-sharing scheme essentially avoids copying of nodes since original
nodes are preserved using the skeleton and environment. However, the cost for these char-

acteristics is rather steep. That is so hecause there is an inevitable drawback of this scheme

2In Pereira’s data structure, forwarding is done to add the rerouting information to the environment e.

47

graph based upon dag2’s skeleton. This adding to the binding content of the environment is
performed at all depths of recursion so that a result graph can be created (when necessary) hy
looking at the dag? nodes and referencing the environment. This way, no copies at all are made
in his method. Instead the result graphs are dynamically created when the graph is needed
later. Below is Pereira’s algorithm taken from [Pereira, 1985] (slightly modified to make it

up-to-date):

] PEREIRA’S ALGORITHM I

FUNCTION unify (dagl-underef,dag2-underef);
dagl — dereference(dagl-underef);
dag? — dereference(dag2-underef);
IF (dagl =r dag2) THEN
return(dag2);
ELSE IF (dagl =r Top) THEN
forward(dagl,dag2);?
return(dag?2);
ELSE IF (dag2 =r Top) THEN
forward(dagl,dag2);
return{dagl);
ELSE IF (dagl and dag2 are atomic and the values are equal) THEN
forward(dagl,dag2);
return(dagl);
ELSE IF (dagl and dag?2 are complex) THEN
shared — intersectarcs(dagl,dag2);
new — complementarcs(dagl,dag2);
forward(dagl,dag2);
FOR EACH arc IN shared DO
unify (destination of
the shared arc for dagl,
destination of
the shared arc for dag2);
If all recursive calls returned successful THEN
put new in the arc-binding of dag2 in ;
return (dag2);
ELSE return L immediately
END; :

This way, the structure-sharing scheme essentially avoids copying of nodes since original
nodes are preserved using the skeleton and environment. However, the cost for these char-

acteristics is rather steep. That is so because there is an inevitable drawback of this scheme

. *In Pereira’s data structure, forwarding is done to add the rerouting information to the environment e.

47

structures are going to be changed). After the top-level unification operation is done, the
nodes are restored by setting the values saved in the array. Copies are made after a successful
unification aud only the necessary nodes are copied to create a new dag. Since Karttunen
actually creates a copy alter a successful unification (whereas in Pereira’s scheme no copies are
created zm;'(l. a dag is assembled every time it is needed), once the copy is created there will be
no log(d) overhead for node accesses associated with Pereira’s algorithm. On the other hand,
there will be a cost of saving the dag structures and their values prior to destructive operations
which is proportionate to the size of the input graph. There is also a cost of reversing the
unification operation every time unification is performed which is also proportionate to the size
of the input graph. Thus, if the size of the input graph grows then the cost of saving and

reversing changes can be high.

3.3 Wroblewski’s method

Wroblewski[1987] introduced a different scheme based upon the notion of incremental copying.
His algorithm is known as “Wroblewski’s nondestructive unification scheme” and has been con-
sidered as the fastest graph-unification algorithm. The basic idea behind his scheme is to create
copies incrementally during unification only when such a need arises. It is a combination of a
destructive unification algorithm unifyl (similar in its control structure to Pereira’s algorithm)
and a nondestructive algorithm unify2 in which copies are created incrementally. Unifyl is
called ouly when either (or both) of the highest nodes of the input graphs are current copies
of OthGI: nodes (so that they can be modified destructively without losing the original grammar
and constituent graphs).

As a data structure, a node is represented with four fields: ‘forward’, ‘arc-list’, ‘copy’, and

'status’. “The forward” fleld contains (a pointer to) another node which the node is being

49

structures are going to be changed). After the top-level unification operation is done, the
nodes are restored by setting the values saved in the array. Copies are made after a successful
unification and only the necessary nodes are copied to create a new dag. Since Karttunen
ﬂ-(‘tllZLUy‘(‘I'(-‘ELtG‘S a copy EL“,(:‘I' a successful unification (whereas in Pereira’s scheme no copies are
created and a dag is assembled every time it is needed), once the copy is created there will be
no log(d) overhead for node accossés associated with Pereira’s algorithm. On the other hand,
there will be a cost of saving the dag structures and their values prior to destructive operations
which is proportionate to the size of the input graph. There is also a cost of reversing the
unification operation every time unification is performed which is also proportionate to the size
of the input graph. Thus, if the size of the input graph grows then the cost of saving and

reversing changes can be high.

3.3 Wroblewski’s method

Wroblewski[1987] introduced a different scheme based upon the notiou of incremental copying.
His algorithm is known as “Wroblewski’s nondestructive unification scheme” and has been con-
sidered as the fastest graph-unification algorithm. The basic idea behind his scheme is to create
copies incrementally during unification only when such a need arises. It is a combination of a
destructive unification algorithm unifyl (similar in its control structure to Pereira’s algorithm)
and a nondestructive algorithm unify2 in which copies are created incrementally. Unifyl is
called ouly when either (or both) of the highest nodes of the input graphs are current copies
of other nodes (so that they can be modified destructively without losing the original grammar
and constituent graphs).

As a data structure, a node is represented with four fields: ‘forward’, ‘arc-list’, ‘copy’, and

‘status’. “The forward’ field contains (a pointer to) another node which the node is being

49

not in dag2). Newd? contains the set-difference of dag2 and dagl. Also another set shared
is ereated which contains a set-intersection of dagl and dag2 arcs. Then for all arcs in the
set, shared, the destinations of the shared ares from the dagl and dag2 are recursively unified.
Every time one recursion to a shared arc succeeds. the shared arc with the new value (result
of recursion) is added to the copy node. If all recursion succeeds copies of arcs in both newd!
and newd? are made while the ‘copies’ of nodes contained within the arcs are respected. The
copies of the union of newd/ and newd? are placed in arc-list of the copy node. This is the
nondestructive incremental copying scheme in Wroblewski’s unify2 algorithm. Also, if either
(or both) highest input graph nodes is a copy, then all of this is bypassed and the destructive
unifyl is called, adding the changes directly on the copy nodes.

Below is Wroblewski’s Unify2. Unifyl is the same as Pereira’s algorithm. The only difference
from Pereira in Unifyl is that in Wroblewski’s algorithm, forwarding is done by directly putting
the forwarded node in the ‘forward’ field of a node instead of storing it in a environment. Also
when complmentarcs (dagl,dag2) are stored into dag2 after successful recursive calls, ‘new’ is
stored directly into the *arc-list” of dag2. Thus, Wroblewski’s Unify! is a destructive version of
Pereira’s algorithm. In the Wroblewski method, Unify!l is called only when either of the input
graphs is a copy. Therefore, there will be no modification made to the original graph. Below is

Wroblewski’s Unify2, which copies incrementally while unification progresses:

[WROBLEWSKT’S UNIFY?2]

FUNCTION unify2? (dagl-underef.dag2-underef);

dagl — dereference(dagl-underef);

dag? — dereference{dag2-underef);

IF (dagl =r dag2) THEN
return{dag2);

ELSE IF (dag! =r Top) THEN
forward(dagl,dag2);
return{dag?);

ELSE IF (dag? =r Top) THEN
forward({dagl,dag2);
return(dagl);

ELSE IF (dag! and dag? are atomic and the values are equal) THEN

not in dag?). Newd? contains the set-difference of dag? and dagl. Also another set shared
is created which contains a set-intersection of dagl and dag2 arcs. Then for all arcs in the
set. shared, the destinations of the shared ares from the dagl and dag2 are recursively unified.
Every time one recursion to a shared arc succeeds. the shared arc with the new value (result
of recursion) is added to the copy node. If all recursion succeeds copies of arcs in both newd/
and newd? are made while the “copies’ of nodes contained within the arcs are respected. The
copies of the union of 71(;'11{(1[and newd? are placed in arc-list of the copy node. Thlis is the
nondestruetive incremental copying scheme in Wroblewski’s unify?2 algorithm. Also, if either
(or both) highest input graph nodes is a copy, then all of this is bypassed and the destructive
unifyl is called, adding the changes directly on the copy nodes.

Below is Wroblewski’s Unify2. Unify! is the same as Pereira’s algorithm. The only difference
from Pereira in Unifyl is that in Wroblewski’s algorithm, forwarding is done by directly putting
the forwarded node in the ‘forward’ field of a node instead of storing it in a environment. Also
when (‘dll)pllnelltzl.l'cs (dagl,dag?2) are stored into dag?2 after successful recursive calls, ‘new’ is
stored directly into the ‘arc-list’ of dag2. Thus, Wroblewski’s Unifyl is a destructive version of
Pereira's &lgoritlim. In the Wroblewski method, Unify! is called only when either of the input
graphs is a copy. Therefore, there will be no modification made to the original graph. Below is

Wroblewski’s Unify2, which copies incrementally while unification progresses:
1 { prog

| WroBLEwskUs UNIFY2 |

FUNCTION unify2 (dagl-underef,dag2-underef);

dagl « dereference(dagli-underef);

dag? — dereference{dag2-underef);

IF (dagl =r dag2) THEN
return{dag2);

ELSE IF (dagl =r Top) THEN
forward(dagl,dag?2);
return(dag?);

ELSE IF (dag? =r Top) THEN
forward(dagl,dag2);
return(dagl);

ELSE IF (dagl and dag?2 are atomic and the values are equal) THEN

51

O e
]

Figure 3-4: Wroblewski’s method: Snapshot 1

of this node was previously made when traversing the path < «,b >, and so this copy is reused
rather than allocating a new node. Subsequently, an arc labeled ‘e’ is added to this reused copy.

Finally, Unifv2 recursion unwinds back to the root node of both dags.”

Figure 3-5: Wroblewski’s method: Snapshot 2

“In Figure 3-6, Unify2 has added the arc labeled ‘g’ in dag2 to the result graph, making a

copy of the subgraph at the end of that arc and placing it in the result graph. Notice that the

subgraph dag2/< g, > was copied even though there existed no corresponding subgraph in

dagt.”

Figure 3-6: Wroblewski’s method: Snapshot 3

As discussed by Wroblewski [1987] only 6 new nodes and 6 new arcs are created in the above
unification. In a naiive destructive unification which uses Unifyl, 10 nodes and 9 arcs would be
created as copies of dagl and dag2 prior to calling unifyl. This way Wroblewski successfully
reduced the number of wasteful operation (unnecessary copying) by introducing the incremental
(:(:)pyi'ng scheme. Since Wroblewski directly places nodes in the copy and arc-list of the nodes,
no structure-sharing based on environment is performed. Therefore, there is no fixed cost log(d)
overhead as associated with Pereira’s algorithm for accessing the nodes. Also, changes in the
copy field can be cancelled- constant time by invalidating the copy field (for example, by using
generation counters), therefore, there will be no cost for reversing the destructive changes which
were associated with Karttunen’s reversible unification.

Thus, the nondestructive unification algorithm was an immediate success and was immedi-
ately adopted by natural language research laboratories around the world. Of course there was
some disadvantage to Wroblewski’s scheme. Over-copying does occur in some cases, for exam-

r

54

ple. in some configurations where dagl contains a variable and dag?2 contains a convergence on
a variable ([Wroblewski, 1987]). Also. we will be discussing the inherent ‘early copying’ prob-
len of the incremental copying scheme. However, despite the shortcomings of his methodology,
until recently his method has been accepted as the most efficient method for graph unification.
Later, Kogure and Kato ([Kogure, 15)89]') developed a version of Wroblewksi’s algorithm which
extended it to handle cyclic feature structures. Their method was to check whether an arc with
the same label already exists (i.e., so called “occur check”) when an arc is added to a node. If
such an arc already exists, destructive unification (unifyl) is called for the destination of the
existing arc unified against the destination of the node beeing added. If such an arc does not
exist, the arc is simply added. Fortunately, their scheme for handling cycles in Wroblewski’s
frlmnwwork are not costly (since it does not need to scan through the entire graph for occur
check). Thus, Wroblewkski’s method is also used by projects (such as ATR) that require cyclic

.

feature structures.

3.4 Kogure’s Method

v

The success of the incremental copying scheme proposed by Wroblewski led to a few research
efforts based upon the incremental scheme. Among them, Godden ([GGodden, 1990]) introduced
a version of the incremental copying scheme in which he used a lazy evaluation technique for
programming languages (Such as in delay, force in Scheme) and treated dags as active data
structures. In Godden’s method, evaluation for copying was delayed, using delayed streames,
until a destructive chauge to the node is to be performed. At that point, copying is forced
to perform the necessay copy operation of the original node. This way, copies are created
incrementally during unification using lazy evaluation. Although using lazy evaluation to delay

copying seemed a straightforward answer to some of the problems of Wroblewski’s method,

[,
[eia]

Godden’s method was never favorable to efficient implementations of Wroblewski’s original
method. First of all, ‘(lelaye(l evaluation is not a cheap operation. The cost of creating delayed
closures is a potontial'ly <‘ostly. operation. Secondly, some of the burdens of excessive copying
were silply replaced by creating closures 1‘1sing lazy evaluation. Since delayed closures may not
be need@d at the end of a unification to create a result graph, some closures delayed on a lazy
streawm simply get wasted. Thus, although, some copies that were originally wasted by creating
structures for nodes were avoided, other wastes were produced by closures that were not forced.

Kogure [1990] introduced a different lazy incremental unification scheme by using depen-
dency pointers instead of delayed closures. In his scheme, nodes to be copied contain a backward
pointer (called copy dependency link) to the mother node of the graph, so that copies are not
created from higher regions in the graph to the lower regions in the graph; instead, copies are
created from the lower region in the graph. This scheme avoids copies of nodes whose subgraphs
were never modified. As a result, an unmodified subgraph of the input graph is shared with the
original input graph. Thus. Kogure introduced structure-sharing to the incremental copying
scheme. He found that some subgraphs copied in Wroblewski’s scheme did not actually need
to be copied. Below is the figure taken from [Kogure, 1990]:

Since the subgraphs E, ', DD, in the figure were never modified, Wroblewski’s scheme clearly
overcopies them. Kogure introduced the copy dependency pointers stored in the nodes to ensure
that copying of the nodes was delayed only until the children nodes were modified and virtually
eliminated the redundant copying in Wroblewski’s algorithm. Unfortunately, Kogure’s method
also has its trade-offs. They are due to the need to maintain the copy dependency pointers in
each of the nodes in the entire graph. In Kogure’s method, each node has an added field called
the copy-dependency slot, in which the list of pairs of mothers and the arc structures connecting

mothers to nodes are stored. Thus, in addition to the need for an added field, this list of the

dg1

copying copying dg2

Figure 3-7: Kogure’s method avoids copying E,F,D.

garbage-collectable additional ‘conses’ (node arc pairs) are stored in copy-dependency. Thus.
by nmki‘ng‘ incremental copying, in order to avoid redundant copying of unmodified subgraphs,
Kogure had to introduce a bidirectionality in the entire directed graphs of feature structures;
this could be ste.ep if graphs are very large. Furthermore, there will be a need to traverse the
graphs upward the dependency pointers to make the copies which in return may result in another
traversal to make further copies. In other words, his algorithm can avoid redundant copying of
unmodified subgraphs, but it will need to traverse twice on a modified subgraph — once to unify
and once to copy, traversing the dependency pointer backwards. Therefore, in the worst case,
his algorithm becomes a two-pass operation, when the advantage of incremental copying was

that it was a one-pass operation (once to traverse down to unify and copy incrementally). Thus,

Nogure’s algorithm should be favorable to Wroblewski’s when the input grammar contains large
subgraphs which are rarely modified, then gains by structure-sharing of unmodified subgraphs
more than offset the need for added data-structure and added garbage collections. However,
if the gl“mmnar_’s behaviour was designed to modify graphs frequently, then the need for extra

traversal can he considered very costly, making it disadvantageous compared to Wroblewski’s

original algorithm.

3.5 Emele’s Method

Emelel991 also introduced a method based upon incremental copying and lazy operation of
copying. He called his scheme Lazy Incremental Copying. His method is a combination of
Wroblewski’s incremental scheme and the structure-sharing idea of Pereira. The incremental
copying algorithm itself is similar to Wroblewski’s; however, lazy copying is introduced to delay
the copying of nodes so that copying is done only when the destructive change is about to hap-
pen. Godden used delayed evaluation for delaying copying, and .Kogure used copy-dependency
pointers to delay copying. Emele uses a series of what he calls chronological dereference chains
in order to make delayed copying possible. In order to evaluate Emele’s scheme, we need to
separate the incremental copying part of his algorithm and the data structure based upon
chronological derefence chains which resembles the last-call optimization technique of Prolog
(as in [Warren, 1983]). As is the case with Pereira’s environment and skeleton method, Emele’s
scheme for chronological dereference is a data-structure technique and is independent of the ac-
tual unification algorithm itself. In other words, it is possible to combine Emele’s chronological
dereference scheme with any other unification algorithms including the one we are proposing in
the next chapter in this thesis. Whether such a combination is a good idea or not is a different

question. It would probably depend on the kind of grammar with which that unification is

53

intended to be used.

What Ewele does in his chronological dereference scheme is to adopt Pereira’s structure-
sharing idea, but instead of using a global branch environment, each node records its own
environment. The chronological dereference is performed by following the chain of forwarding
pointers based upoun the environment list which decides whether a forwarding pointer should
be followed or not. An cnvironment is represented as an ordered sequence of valid generation
counters (such as < 1,2,3,4,5,6... >). The current generation is defined as the last element in
this sequence.

Figure 3-8 taken from [Emele, 1991] is an example of a chronological dereference chain.
It illustrates how dereference works with respect to the environment: “Node b is the class
representative for environment < 0 >, node ¢ is the result of dereferencing for environments
< 0,1 >and <0,1,2 >, and finally node f corresponds to the representative for the environment
< 0,1,2,3 > and all further extentions that did not add a new forwarding pointer to newly
created copy nodes”,

With this method of chronological dereferencing and locally represented environment, Emele
effectively attained a data structure that supports structure-sharing and avoids the potentially
complex operation of merging environments in Pereira’s structure-sharing scheme. He com-
bined this data-structure with Wroblewski’s incremental copying scheme and called it a “Lazy
Incremental Copying” scheme.

\/Vh?;t follows is a walk-through of how this happens in his Lazy Incremental Copying scheme
using the example input graphs below (Figure 3-9).

Figure 3-10 s.hows that copies with generation | are created incrementally while unification
progresses. Since everything needs to be copied there is no structure-sharing. Note that in

Ewmele’s scheme, as in Pereira’s scheme, arcs are not copied. Instead the result graph dag3

0,0, 0,0y 0,0

Chronological dereferencing

<0>=Db
<0 1> =2c¢
<01 2>=¢c¢
<0123 =1

Iigure 3-8: Traversing forwarding links according to environment

comes with the environment < 0,1 > so that subgraphs of dag3 are created by looking at the
environment and traversing down dagl.

Figure 3-11 shows the unification of the result graph dag3 with a new graph dagd.

Note that arcs (a 0) and (b 0) of dag3 are simply placed in dagh5. Some copies are made
(the ones numbered with generation 2) since destructive changes were to be made. After the
unification dagh can be constructed by following the original graphs stored in dag3 (which is
actually dagl) and by performing the chronological dereferencing on the subgraphs.

This way, Emele successfully combined Wroblewski’s incremental scheme with Pereira’s
structure sharing scheme to combine the advantages of the two. On the other hand, he also
combined the disadvantages as well. The disadvantages of Wroblewski’s incremental scheme,
which is inherent in incremental method and is shared by Godden, Kogure, and Emele, will be
discussed in the next chapter. The disadvantage of the structure-sharing scheme is that there

will be a cost for sharing structures which could be expensive. In Emele’s method this shows

60

dgt dg2

Fligure 3-9: Sample input graph

as the cost for traversing t-,he chronological dereference chain. As we have seen in the above
example, every time a destructive change is to be made to a node, a copy of the node is created
and put at the end of the chronological dereference chain. Figure 3-12 is a picture of dag5 from
the above example.

After only two successful unifications, with a graph containing only 3 non-root nodes and 3
arcs, we need to follow the derefence chain 4 times. Since every unification in a shared arc is a
destructive operation, this dereference chain is extended every time a unification is performed
in a shared arc. Since some constituent graphs are unified a great number of times in typical
large scale natural language systems, the cost of this can be very high. A long chronological
dereference chain may be needed to be followed in order to get the node that is needed. Note
that the chain must be followed every time the graph is needed for each and every node in
the entire graph. Since each constituent graph built during unification can grow extremely

large in large scale systems, and since unification between them escalates the complexity of

61

Figure 3-10: dag3 = dagl N dag2

traversing the chronological dererence chain, the question of whether the introduction of this
data structure scheme is desirable is an open question dependént upon application areas. If
we could find an application where graphs contain only few shared arcs and where graphs are
rarely reused once unified, then Emele’ scheme could be an ideal option. In such a case, as
we have discussed above, his scheme can be adopted to any existing unification algorithms,

including the one we are proposing in this thesis.

62

Figure 3-11: dagh = dag3 N dag4

Thus dg5 <0,1,2>

Figure 3-12: dagh

63

Chapter 4

Quasi-Destructive Graph

Unification

4,1 Introduction

In designing an efficient graph unification algorithm, we have made the following observation

which influenced the basic design of the new algorithm described in this thesis:
Unification does not always succeed.

In a typical natural language system with a relatively small grammar size, 60 to 80 percent
of unifications attempted during a successful parse result in failure. As the grammar size
increases, the number of unification failures for each successful parse increases. For example,
in our large-scale speech-to-speech translation system jointly under development by CMU and
ATR Interpreting Telephony Research Laboratories, we estimate more than 90% of unifications
to be failures during a successful parse.”If a unification fails, any computation performed and

memory consumed during the unification is wasted.

64

Another observation about the behaviour of graph unification which seems well accepted in
the existing literature is that:

Copying is an expensive operation.

Copying a node places a heavy burden on the parsing system. Wroblewski[1987] calls it a
“computational sink”. Copying is expensive in two ways: 1) it takes time; 2) it takes space.
Copying takes time and space essentially because the area in the random access memory needs
to be dynamically allocated, which is an expensive operation. We calculated the computation
time cost of copying to be more than 90 percent of the total parsing time in our large-scale
speech-to-speech translation system. This time/space copying burden presents problems in an
environment where computational resources are limited due to the size of the grammar and
ot.her knowledge sources. (Also, the creation of unnecessary copies eventually triggers garbage
collections more often in a Lisp environment, which also degrades the overall performance
of the parsing system.) In general, parsing systems (such as large LR tables of Tomita-LR
parsers, expanding tables and charts of Earley, and active chart parsers) are always short of
memory space. Our own phoneme-based generalized LR parser for speech input is always
running on a swapping space because the LR table is too big, and the marginal addition or
subtraction of memory space consumed by other parts of the system often has critical effects
on the performance of these systems. An experiment conducted at ATR showed that in order
to attain a stable performance of a parser, a physical memory space required for the sentence
that requires the most memory needs to be guaranteed to the system. We have seen that the
amount of memory (conses) consumed by copying operations during a parse determines the

necessary physical memory.! With the aforementioned observations, we propose the following

'For example, as we will see from the data in Chapter 6, the memory needed for Wroblewski’s algorithm
was 5 to 6 times greater than the proposed scheme. This means that not only were sentences faster with our
scheme, but also that some sentences could not be parsed at all using Wroblewski’s algorithm on our machine
environment due to the physical limit of memory speed.

65

principles to be the desirable conditions for an efficient graph unification algorithm:

¢ Copying should be performed only for successful unifications.

o Unification failures should be found as soon as possible.

By way of definition, we would like to categorize excessive copying of graphs into Over
Copying and Early Copying. Wroblewski[1987] also defines Over Copying and Early Copying.
Our (lefivnition of over copying is the same as Wroblewski’s: however, our definition of early
copying is slightly different.

¢+ Over Copying: Two graphs are created in order to create one new graph. This typically

happens when copies of two input graphs are created prior to a destructive unification

operation to build one new graph.

o Early Copying: Copies are created prior to the failure of unification so that copies

created since the beginning of the unification up to the point of failure are wasted.

Wroblewski defines Early Copying as follows: “The argument dags are copied before unifi-
cation started. If the unification fails then some of the copying'is wasted effort.” He restricts
early copying to cases that only apply to copies that are created prior to a unification. Restrict-
ing early copying to represent copies that are created prior to a unification leaves a number of
wasted copies that are created during the same unification up to the point of the detection of
failure. Therefore, these wasted copies will not be covered by either of the above two definitions
for excessive copying. We would like Early Copying to mean all copies that are wasted due to

a unification failure, whether these copies are created before or during the unification.

4.2 The Quasi-Destructive Graph Unification Algorithm

We would like to introduce an algorithm which addresses the eriteria for fast unification dis-

cussed in the previous sections ([Tomabechi, 1991a)). It also handles cycles without over copying

66

(without any additional schemes such as those introduced by Kogure[1989]).
As a data structure, a node is represented with six fields: ‘type’, ‘arc-list’, ‘comp-arc-list’,
Hforward’, “copy™. and generation.” The data-structure for an arc has two fields, ‘label” and

‘value’. “Label” is an atomic symbol which labels the arc, and ‘value’ is a pointer to a node

structure,

NODE
B +
| type |
o ——————— +
| arc-list |
e +

o +

| forward | ARC
o + e +
| copy | | label |
o e e + S +
| generation | | value |
T —— + e +

Figure 4-1: Node and Arc Structures

The central notion of the Q-D algorithm is the dependency of the representational content
on the global timing clock (or the global counter for the current generation of unifications).
Any modification made to ;‘.omp-a,rc-list, forward, or copy fields during one top-level unification
can be invalidated by one increment operation on the global timing counter. Contents of the
comp-arc-list, forward and copy fields are respected only when the generation mark of the
particular node matches the current global counter value. Q-D graph unification has two kinds
of arc lists: 1) arc-list and 2) comp-arc-list. Arc-list contains the arcs that are permanent (i.e.,

ordinary graph arcs) and comp-arc-list contains arcs that are valid only during one top-level

*Martin Bmele of University of Stuttgart suggested that a separate field for ‘copy’ may be saved by using a
forward link only, since copy link is needed only when forward link is not used.
*Note that [Tomabechi, 1991a] used separate mark fields for the comp-arc-list, forward, and copy; currently

however. only one generation mark is used for all three fields. Thanks are due to Hidehiko Matsuo of Toyo
Information Systems for suggesting this.

67

unification operation. The algorithm also uses two kinds of forwarding links, i.e., permanent and
temporary. A permanent forwarding link is the usual forwarding link found in other algorithms
([Pereira, 1985], [Wroblewski, 1987], etc). Temporary forwarding links are links that are valid
only during one top-level unification. The currency of the temporary links is determined by
matching the content of the generation field for the links with the global counter; if they match.
the content of this field is respected?,

As in Pereira[1985], the Q-D algorithm has three types of nodes: 1) :atomic, 2) :Top®, and
3) :complex. The :atomic type nodes represent atomic symbol values (such as ‘Noun’), :Top
type nodes are variables, and :complex type nodes are nodes that have arcs coming out of
them. Arcs are stored in the arc-list field. The atomic value is also stored in the arc-list if
the node type is :atomic. :Top nodes succeed in unifying with any nodes and the result of
unification takes the type and the value of the node with which the :Top node was unified,
:atowic nodes succeed in unifying with :Top nodes or with :atomic nodes with the same value
(stored in the arc-list). Unification of an :atomic node with a :complex node immediately fails.
:complex nodes succeed in unifying with :Top nodes or with :complex nodes whose subgraphs
all uniﬁ;.G What follows are the central quasi-destructive graph unification algorithm and the
dereferencing” function. Following that is the algorithm description for copying nodes and arcs

(called from unify0) while respecting the contents of comp-arc-lists. '

*We do not have a separate field for temporary forwarding links; instead, we designate the integer value 9 to
represent a permanent forwarding link. We start incrementing the global counter from 10 so that whenever the
generation mark is not 9, the integer value must equal the global counter value in order to respect the forwarding
link.

*We called this :bottom in [Tomabechi, 1991a) and [Tomabechi, 1992). Also it is called leaf in Pereira’s
algorithm.

®Arc values are always nodes and never symbolic values because :atomic and :Top nodes may be (or may
become)} pointed to by multiple arcs depending on grammar constraints. We do not want arcs to contain
terminal atomic values.

"Dereferencing is the operation of recursively traversing forwarding links to return the target node of the
forwarding (as presented in discussions of Pereira’s and Wroblewski’s algorithms in Chapter 3).

68

QUASI-DESTRUCTIVE GRAPH UNIFICATION

FUNCTION nnify-dg{dgl,dg2);
result — cateh with tag “anify-fail
calling unify0(dgl.dg2):
increment *unify-global-counter®; ;; starts from 10 #
return(result);
END:

FUNCTION unify0(dgl,dg2);
if *T* = unify1(dgl,dg2); THEN
copy — copy-dg-with-comp-arcs(dgl);
return(copy});

END;

FUNCTION unifyl (dgl-underef.dg2-underefl };
dgl — dereference-dg(dgi-underefl);
dg? — dereference-dg(dg2-underef);
IF (dgl.copy is non-empty) THEN
dgl.copy — nil; j; cutoff uncurrent copy
IF (dg2.copy is non-empty) THEN
dg2.copy « nil;
IF (dg! =r dg2)°THEN
return{"*T*);
ELSE IF (dgl.type = :Top) THEN
forward-dg(dgl,dg2,:temporary);
return{"*T*);
ELSE IF (dg2.type = :Top) THEN
. forward-dg(dg2,dgl,:temporary);
return("*T*);
ELSE IF (dgl.type = :atomic AND
dg2.type = :atomic) THEN
IF (dgl.arc-list = dg2.arc-list)!* THEN
forward-dg(dg2,dgl,:temporary});
return("¥T*);
ELSE throw'!'with keyword unify-fail;
ELSE IF (dgl.type = :atomic OR
dg2.type = :atomic) THEN
throw with keyword 'unify-fail;
ELSE shared — intersectarcs(dgl,dg2);
FOR EACH arc IN shared DO
unify1{destination of
the shared arc for dgl,
destination of
the shared arc for dg2);
forward-dg(dg2,dgl,:temporary);'?
new — complementarcs(dg2,dgl);'?
IFY (dgl.comp-arc-list is non-empty) THEN
IF (dgt.generation = *unify-global-counter*) THEN
FOR EACH arc IN new DO
push arc to dgl.comp-arc-list;
ELSE dgl.comp-arc-list «— nil;
ELSE dgl.generation — *unify-global-coun ter*;
dgl.comp-arc-list — new;
return ("*¥T*);

END;

[GrAPH NODE DEREFERENCING

FUNCTION dereference-dg(dg);
forward-dest — dg.forward;
IF (forward-dest is non-empty) THEN
IF (dg.generation = *unify-global-counter* OR.
dg.generation = 9) THEN
return(dereference-dg(forward-dest));
ELSE dg.forward — nil;
return(dg); 2
ELSE return(dg);
END;

The functions Complementares(dgl,dg2) and Intersectarcs(dgl,dg2) return the set-difference
(the arcs with labels that exist in dgl but not in dg2) and intersection (the arcs with labels
that exist both in dgl and dg2). During the set-difference and set-intersection operations, the
content of comp-are-lists are respected as parts of arc lists if the generation mark matches the
current value of the global timing counter. Forward(dgl, dg2, :forward-type) puts (the pointer
to) dg2 in the forward field ‘o[' dgl. If the keyword in the function call is :temporary, the current
value of the *unify-global-counter* is written in the generation field of dgl. If the keyword is
:permanent, 9 is written in the generation field of dgl.'® The temporary forwarding links are
necessary to handle reentrancy and cycles. As soon as unification (at any level of recursion

through shared arcs) succeeds, a temporary forwarding link is made from dg2 to dgl (dgl to

%9 indicates a permanent forwarding link.

®As discussed previously, this represents ‘equal’ in the ‘eq’ sense. Because of forwarding and cycles, it is
possible that dgl and dg2 are ‘eq’.

' Arc-list contains atomic value if the node is of type :atomic.

" Gatch/throw construct; i.e., immediately return to unify-dg.

2This will be executed only when all recursive calls into unifyl have succeeded. Otherwise, a failure would
have caused an immediate return to unify-dy.

“3(fomplementnrcs((lg?.,dgl) was called before unifyl recursions in [Tomabechi, 1991a], Currently it is relocated
to after all unify! recursions successfully return. Thanks are due to Marie Boyle of the University of Tuebingen
for suggesting this.

"This check was added after [Tomabechi, 1991a} to avoid over-writing the comp-arc-list when it is written
more than once within one unify0 call. Thanks are due to Peter Neuhaus of Universitit Karlsruhe for reporting
this problem.

"The Q-D algorithm itself does not require any permanent forwarding; however, the functionality is added
because some grammar reader modules that read the path equation specifications into directed graph feature-
structures use permanent forwarding to merge the additional grammatical specifications into a graph structure.

70

dg2 if dgl is of type :Top). Thus, during unification, a node already unified by other recursive
calls to unifyl within the same unify0 call has a temporary forwarding link from dg2 to dgl (or
dgl to dg2). As a result, if t:,his node becomes an input argument node, dereferencing the node
causes dgl and dg2 to become the same node and unification immediately succeeds. Thus, a
subgraph below an already unified node will not be checked more than once even if an argument

graph has a cycle.!®

| QUASI-DESTRUCTIVE COPYING |

FUNCTION copy-dg-with-comp-arcs(dg-underef);
dg — dereference-dg{dg-underef);
IF (dg.copy is non-empty AND
dg.copy.generation'” = *unify-global-coun ter*) THEN
return(dg.copy);'®
ELSE IF (dg.type = :atomic) THEN
newcopy ~ create-node();"’
newcopy.type «— :atomic;
newcopy.arc-list — dg.arc-list;
newcopy.generation — *unify-global-counter®;
dg.copy «— newcopy;
return(newcopy);
ELSE IF (dg.type = :Top) THEN
newcopy — create-node();
newcopy.type — :Top;
newcopy.generation — *unify-global-counter*;
dg.copy — newcopy;
return{newcopy);
ELSE
newcopy — create-node(); .
newcopy.type — :complex;
newcopy.generation ~— *unify-global-counter*;
dg.copy — newcopy;?®
FOR ALL arc IN dg.arc-list DO
newarc +— copy-arc-and-comp-arc{arc);
push newarc into newcopy.arc-list;
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unily-global-counter*) THEN
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc «— copy-arc-and-comp-arc(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list « nil;
return (newcopy);
END;

"% Also, during copying subsequent to a successful unification, two arcs converging into the same node will not
cause overcopying simply because if a node already has a copy then the copy is returned.

71

FUNCTION copy-arc-and-comp-arc(input-arc);
label — input-arc.label;
value — coupy-dg-with-comp-arcs(input-arc.value);
return a new arc with label and value:

END:;

Let us walk through a simple unification example first. What follows in the following two

pages is simple unification of two graphs dgl and dg2 which represent feature structures:

dgil
[[a s]
(b [11]
dg2
[([a Xx01 1]
(b X01]
lc t1]

First, top-level unify-dg calls unify0 which in turn calls unifyl. Unify0 will perform quasi-
destructive copying operation after the top level call to unify!l successfully returns. Now top-
level unifyl finds that each of the input graphs has arcs with-labels a and b (shared). TFor
now we represent arcs with label a as arc-a. Then unifyl is recursively called (unifyl(2,5)).
At step two, the recursion into arc-a locally succeeds, and a temporary forwarding link with
time-stamp(n) is made from node 5 to node 2. At the third step (recursion into arc-b), by the
previous forwarding to node 2, node 5 already has the value .5 (by dereferencing). Then this

unification returns a success and a temporary forwarding link with time-stamp(n) is created

from node 3 to node 2. At the fourth step, since all recursive unifications (unifyls) into shared

%] e., the ‘generation’ field of the node stored in the ‘copy’ field of the ‘dg’ node. The algorithm described
in [Tomabechi, 1991a] used ‘copy-mark’ field of *dg’. Currently ‘generation’ field replaces the three mark field
described in the article,

211 e., the existing copy of the node.

*2(ireates an empty node structure.

**This operation to set a newly created copy node into the ‘copy’ field of ‘dg’ was done after recursion into
subgraphs in the algorithm description in [Tomabechi, 1991a] which was a cause of infinite recursion with a
particular type of cycles in the graph. By moving up to this position from after the recursion, such a problem
can be effectively avoided. Thanks are due to Peter Neuhaus for reporting the problem.

72

since it was

unification

@ @

C
c
2 -
el
: Q=
S © > =D
o —
o @ am.vm
c = Z
.. Q —~ ot o)
= o o o -
o = "©@
e = ° 022
- — T =
[Q > o] wa
_ = ~ 2 ®E g -
N — O se —~k -
S © > - - =\®o
© e @ S9 8 2k
ol ~ nvc _—
o b..MHa ...Ol * .nlu.ow > [aw
e
© <% ~ F~ 22 z)5
" y e J o=
= ® 2z
- 3 ~ @Y T © 533 °
7 2 2 _ L = - - 833
Pt s © o [3+]
- m1 —_ aa® © = dwm
(@) ()] — D= m 5 > =
° E o ©Fsz 5 - Z3E
S e O g > * - 2> .
© N W o = . - =
() © - ._W.Ar.U...._--. w =t .
o 1\@ o T O . P
© (o — w— ! ' '
= ° s 5 @ " P
B T e e e e e e o = = e e e e = o = e =
e m
gll
n]
? 3
>
e]
c
=

vt
c
e-
ol
5 =
CA.u -
o @ *
2s |- c
-0
et g’ n
o £ ©
9 o ht o
Q —
w © © o
o z 5
) o
V.M o s
—-— Y
— O o)) ey
< o 3 2 —
c >
re) o
2 ~ @ |5 — 2 o
T A - ® c ~ 3 c
5(c ° T \% 5|3 o S =
2/= © %) Qo)
o e o - = \© AHV a ©
o = v | o ~
|3 R e & 2
'St~ - «© m > o
=lo ! ©
x “— o [p——
= 0 0
* d

generation

forward @ to@
m
S_/[]
torward(n)
,® N
new is put in comp
a
S
ot
T
-with-comp-arcs(
----make a copy of dg1l
forwarding and

---- EXIT unify1

' C

== EXIT unify1
opy-dg

arcs succeeded, top-level unifyl creates a temporary forwarding link with time-stamp(n) from
dg2’s root node 4 to dgl’s root node 1, and sets arc-c (new) into comp-arc-list of dgl and
returns success ("FT*). At the fifth step, a copy of dgl is created respecting the content of
comp-arc-list and dereferencing the valid forward links. This copy is returned as a result of
unification. At the last step (step six). the global timing counter is incremented (n = n-+1).
After this operation, temporary forwarding links and comp-arc-lists with uncurrent time-stamp
(# n+1) will be ignored. Therefore, the original dgl and dg2 are recovered in constant time
without a costly reversing operation. (Also, note that recursions into shared-arcs can be done

in any order, producing the same result).

73

As we just saw. the algorithm itsell is simple. The essential difference between our unifyl
and the previous ones such as Pereira’s is that our unifyl is non-destructive. That is so because
the complementarcs(dg2,dgl) are set to the comp-arc-list of dgl and not into the arc-list of
dgl. Thus, as soon as we increment the global counter, the changes made to dgl (i.e., addition
of complement arcs into comp-arc-list) vanish. As long as the generation value matches that
of the global counter, the content of the comp-arc-list can be considered a part of arc-list and
therefore, dgl is the result of unification. Hence the name quasi-destructive graph unification.
In order to create a copy for subsequent use, we only need to make a copy of dgl before we
increment the global counter, while respecting the content of the comp-arc-list of dgl.

This way, instead of calling other unification functions (such as unify2 of Wroblewski) for
incrementally creating a copy node during a unification, we need only to create a copy after
unification. Thus, if unification fails, no copies are made at all (as in Karttunen’s scheme).
Because unification that recurses into shared arcs carries no burden of incremental copying
(i.e., it simply checks whether nodes are compatible), as the depth of unification increases
(i.e., as the graph gets larger) the speed-up of our method should become conspicuous if a
unification eventually fails. Since a parse that does not fail on a single unification is unrealistic,
the gain from our scheme should depend on the number of unification failures that occur during
a uniﬂcz;tion. As the grammar size increases, the number of failures per parse tend to increase
and the graphs that failed get larger, and the speed-up from our algorithm should become more
apparent. Therefore, the characteristics of our alé;orithm seem desirable.

What follows is a sequence of examples showing the way that temporary forwarding and
comp-arc-list work to perform efficient unification. The quasi-destructive copying after uni-
fication copies the dgls by simply following temporary forwarding pointers. Unlike Emele’s

method, the temporary forwarding does not glow since there is no chronological derefencing.

74

After a successful unification, one increment in the global counter invalidates all changes made
to the graph.

First we will start with another simple example as shown in Figure 4-2. Note that unify-
dg(dgl.dg2) and unify-dg(dg2,dgl) get the same results. The result should be as in Figure 4-3.

We can see that only a minimum number of copies are created.

cmp-arc-list

forward(n)

[igure 4-2: Another simple example

Now. for a bit more complicated example (Figure 4-4), but one that works in a similar
nranner.

And the result in Figure 4-5

Now comes a very difficult example. Not only might its workings be difficult to follow,
it was impossible for most past unification algorithms. But if you follow the simple rule of
traversing the arcs, and if you find [}, just forward it to the counterpart. Add the complement
arcs into comp-arc-list, and it turns out that the unification is rather straightforward in the
QD framework. We will use three figures (Figures 4-6, 4-7, 4-8) to depict this one. The first

step is to forward the dg2/< e > which is [} to dgl/< a >.

dg3(result) C

Figure 4-3: and the result

Then we unify dgl/< b,d > and dg2/< b,d >. Since both are [], dgi/< b,d > gets
forwarded to dg2/< b,d > (see the algorithm). Now we traverse into arc-c and unify dgl/< ¢ >
and dg2/< ¢ >. We find timt dgl/< ¢ > is already forwarded to dg2/< b,d > so actually we
are unifying the dg2/< b,d > with dg2/< ¢ >. Since dg2/< b,d > then is [], it succeeds and
dg2/< b,d > is forwarded to dg2/< ¢ >. This is the end of the recursions into the shared arcs.
Now, arc-f is the complementarc(dg2,dgl) therefore, it is put into the comp-arc-list of dgl. This
is the end of the recursive calls to unifyl.

Now unifyl returns and unify0 makes a copy of dgl respecting the current forwarding and
comp-arc-list.

One final note is that when Q- copying recurses into the arc-e of dg2 by following the
temporary forwarding links while making a copy of dgl, the top node of dg2 will not be copied
twice. This is so because when the top-level unifyl returns, the temporary forwarding from

the top node of dg2 to dgl is made, therefore, when the cyclic arc-e tries to make a copy of

the top node of dg2, it finds that the top node is already forwarded to the top node of dgl.

76

frwd(n) \

frwd(n)
Figure 4-4: A little more difficult example

Since the top 116(19 of dgl was already copied at the beginning of the Q- copying of dgl, the
already-made copy is simply returned (see the first IF in the Q-D Copying algorithm).

Finally, we would like to provide the example of another cyclic graph unification, one which
we already saw in Chapter 2 (Figure 2-2). It is the unification of the cyclic graphs which Pollard
and Sag once regarded as not unifiable. We already claimed that from our definition of the
subswption relation, the unification of these graphs should be perfectly reasonable.

We promised in Chapter | and 2 that we would provide an algorithm that supports our
definition of the subsumption and extention relations regardless of the existence of cycles. Here,
we can see easily that the Q-D algorithm fulfills the promise. Actually, you will probably see
that unification of these sturctures is rather trivial if you follow the steps of Q-D unification by
hand. First we do 1111ifyl(d'g;l/< a >,dg2/< a >). Since dg2/< a > is [| we forward from it to
dgl/< a > as below. Next we do unifyl(dgl/< b >,dg2/< b >) and this time dgl/< b > is []

and we forward it to dg2/< b > such that the result is as in Figure 4-10.

77

dg3(result ¢

Figure 4-5: and the result

Finally, we simply make a copy of dgl as usual (Figure 4-11).*' When we Q-D copy
dgl/< a,a > since it is forwarded to dg2/< b > we copy the arc below which points to
dg2/< b,a >. Since it is forwarded to dgl/< ¢ >, we can copy that node. Now we find that
this node was already copied when we traverse down the arc-a on dgl, so we simply return
the copy that is already stored in the ‘copy’ field of dgl/< « >. This way, we can see that

unification of these feature structures is possible and actually trivial using the Q-I) scheme.

4.3 Discussion

[ncremental copying has been accepted as an effective method of minimizing over copying and
eliminating early copying, as defined by Wroblewski. However, while being effective in mini-

mizing over copying (it over copies only in some special cases of convergent arcs), incremental

*!Recall that in our notation, the values with the same tagging X01 in the distinct feature structures do not
indicate the same value. the taggings Xmn are simply put in order of appearance from the root nodes within
one graph. Therefore, the node X01 of dgl and node X01 of dg3 are distinct nodes. Actually, as a matter of
correspondence in this figure, X02 of dg3 corresponds to X01 of dgl.

78

Iligure 4-6: first step
a\’c’“sx

ot
e
e

Figure 4-7: Containing a cycle

copying is ineffective in eliminating early copying as we define it.2?
[ncremental copying is ineffective in eliminating early copying for two reasons. First, when
incremental copying unification is performed, any copies created up to the point of failure in

the same subgraph of a shared arc will be wasted, as seen in Figure 4-12.
Second and more significantly that since the recursive calls into the shared arcs are non-

deterministic (independent of each other), there is no way for one particular recursion into a

2 Barly copying’ will henceforth be used to refer to early copying as defined by us.

79

dg3(result)

Figure 4-8: and the result

dg1 dg2 dg1
a [a X01]
a
b .
b X01
b a
a dg2
a a X02
o . b [a xoz]

[1] []

Figure 4-9: Unification of another cyclic feature structure

shared arc to know the result of future recursions into other shared arcs. Therefore, even if a
particular recursion into one arc succeeds (with minimum over copying and no early copying
in Wroblewski’s sense), other arcs may eventually fail; thus the copies that are created in the
successful arcs are all wasted. Figure 4-13 shows such an example. If incremental unification
proceeds unifying the subgraphs E,X,Y, and then Z. At some deep position of Z, if unification
failure is found, not only are nodes in Z wasted (as we saw in Figure 4-12) but all of the copying

created in E.X\Y will also be wasted. By structure-sharing of unmodified graphs, Kogure’s and

80

L]
[]~ [
X01 X02

Figure 4-10: Putting temporary forwarding links

dg3
a
dg3
X01 b
a [x01 a xoz]
a
2 b [x2 a xo1

[1
X02 Figure 4-11: and the result

Emele’s schemes can avoid wasting the subgraph E (i.e., a complement graph), b,ut‘ their scheme
cannot avoid wasting X and Y (Figure 4-13). Note that this is inherent and unavoidable in
incremental schemes, since by definition, these schemes must produce copies as they proceed.
Since each recursive calls to shared arcs are non-deterministic, future event in other recursive
calls are not predictable. In order to avoid this problem, incremental schemes will have to delay
all copying until after entire top-level unification. This will mean that these unifications will

no longer be incremental. Thus, fully delaying copying in incremental schemes to avoid early

81

if inconsistency is found here
all this is wasted

Figure 4-12: Early copy of incremental scheme within the same subgraph

copying would make their control structures essentially no different from Q-D and reversible
(Karttunen) schemes. In other words, we can also view the Q-D scheme as a fully lazy scheme
without overhead for delaying.

The difference between the Q-D scheme and the incremental scheme becomes apparent when
the used grammar is sufficiently large, containing large subgraphs which may be over-copied by
the incremental scheme. As we will see in the data in Chapter 6, by avoiding the Early Copying,
the proposed algorithin runs at about twice the speed of Wroblewski’s[1987] algorithm. The
control structure of our algorithm is identical to that of Pereira[1985]. However, in Pereira’s
method, a result graph is represented as a combination of the original graph (‘skeleton’) and

the updates (new arcs to be added to create the result stored in ‘environment’). Thus the result

82

graph is dynamically created whenever it is needed. This causes the log(d) overhead (where d
is the number of nodes in a graph) to assemble the whole graph everytime the node is accessed.
h; the proposed scheme, instead of storing changes to the argument graphs in the environment,
we store the changes in the graph structure themselves (non-destructively): therefore, there
will be no overhead associated with node accesses. We share the principle of storing changes
in a restorable way with Karttunen’s[1986] reversible unification and copy graphs only after a
successful unification. In the Karttunen’s method, whenever a destructive change is about to
be made, the attribute value pairs®® stored in the body of the node are saved into an array.
These values are restored after the top level unification is completed. (A copy is made prior to
the restoration operation if the unification was a successful one.) Thus, in Karttunen’s method,
each node in the entire argument graph that has been destructively modified must be restored
separately by retrieving the attribute values saved in an array and by resetting the values into
the dag structure skeletons. In the Q-D method, one increment to the global counter can

invalidate all the changes made to the nodes.

*1e., arc structures: ‘label’ and ‘value’ pairs in our vocabulary.

83

Suppose X, Y were successful but unification failure was found
somewhere in Z; then X, Y and Z until detection of failure are
wasted. Kogure and Emele avoid copying of E but X, Y, Z will be
copied and these copies are all wasted.

Figure 4-13: Unavoidable massive early copying of incremental schemes

34

Chapter 5

Quasi-Destructive Graph

Unification with Structure-Sharing

5.1 Introduction

In the previous chapter, we presented the following observation about graph unification:
Unification does not always suecceed, and
Copying is an expensive operation.

We proposed the following two principles for fast graph unification based upon the above

observations:

¢ Copying should be performed only for successful unifications.

e Unification failures should be found as soon as possible.

Thus, we eliminated Over Copying and Early Copying (as defined in the previous chapter).
In this chapter, we propose another design principle for graph unification based upon yet

another observation :

Unmodified subgraphs can be shared.

At least two schemes (namely [Kogure, 1990] and [Emele, 1991]) have been proposed recently
based upon this observation; however, both schemes are hased upon the incremental copying
scheme. As described in previous chapter, incremental copying schemes inherently suffer from
Early Copying, as defined in this thesis. This is because, when a unification fails, the copies that
were created up to the point of failure are wasted if copies are created incrementally. By way of
definition we would like to categorize the sharing of structures in graphs into Feature-Structure
Sharing (I'S-Sharing) and Data-Structure Sharing (DS-Sharing). Below are our definitions:

¢ Feature-Structure Sharing: Two or more distinct paths within a graph share the same
subgraph by converging on the same node — equivalent to the notion of structure sharing
or reentrancy in linguistic theories (such as in [Pollard and Sag, 1987]).

e Data-Structure SHaring: Two or more distinct graphs share the same subgraph by
converging on the same node — the notion of .9tructure-sha;ing at the data structure level.
[Kogure, 1990] calls copying of such structures Redundant Copying.

Virtually all graph-unification algorithms support FS-Sharing and some support DS-Sharing
with varying levels of overhead. In this chapter, we propose a scheme of graph unification
based upon a quasi-destructive graph unification method that attains DS-Sharing with virtually
no overhead for structure-sharing. Henceforth, in this thesis, structure-sharing refers to DS-
sharing unless otherwise noted. We will see that the introduction of stnﬁture-sharing to quasi-
destructive unification attains another two-fold increase in run-time speed. The graphs handled
in the scheme can be any directed graph and cyclicity is handled without any algorithmic
additions.

Our design principles for achieving structure-sharing in the quasi-destructive scheme are:

86

¢ Atomic and Top nodes can be shared! : Atomic nodes can be shared safely since
they never change their values. Top nodes can be shared? since Top nodes are always

forwarded to some other nodes when they unify.

e Complex nodes can be shared unless they are modified : Complex nodes can be
considered modified if they are a target of the forwarding operation or if they received the

current addition of complement arcs (into comp-arc-list in a quasi-destructive scheme).

By designing an algorithm based upon these principles for structure-sharing while retaining
the quasi-destructive nature of our algorithm, our scheme eliminates Redundant Copying while
eliminating both Early Copying and Over Copying,.

Figure 5-1 shows how structure sharing in the proposed scheme will be attained. All the
subgraphs which are not modified are shared by the result graph. In the subgraph where
modification occurred, only the path above the modified node is copied and the nodes in the
path below the modified node are simply shared with the original graphs. In the next section,

we will see how this can be done in the Q- scheme.

5.2 Quasi-Destructive Graph Unification with Structure-Sharing

In order to attain structure-sharing during Quasi-Destructive graph unification, no modification
is necessary for the unification functions described in the previous section. This section describes
the quasi-destructive copying with structure-sharing (QDSS) which replaces the original copying
algorithm. Since unification functions are unmodified, the Q-D unification without structure-

sharing can be mixed trivially with the Q-D unification with structure-sharing if such a mixture

'Recall that atomic nodes are nodes that represent atomic values. Top nodes are nodes that represent
variables.

2As long as the unification operation is the only operation to modify graphs.

87

these nodes and arcs
are newly created

modified

these nodes and arcs
are shared

Figure 5-1: How Redundant Copying is Eliminated

is desired (by simply choosing different copying functions). Informally, the Q-D copying with
structure-sharing is performed in the foliowing way. Atomic and Top nodes are shared. A
complex node is shared if no nodes below that node are changed (a node is considered changed
by being a target of forwarding or having a valid comp-arc-list). If a node is changed then
that information is passed up the graph path using a multiple-value binding facility when a
copy of the node is recursively returned. Two values are returned, the first value being the
copy (or original) node and the second value being the flag indicating whether any of the nodes
below that node (including that nodes) have been changed. Atomic and Top nodes are always

shared; however, they are considered changed if they were targets of forwarding, such that the

88

‘changed’ information is passed up. If the complex node is a target of forwarding, and if no node
below that node is changed, then the original complex node is shared; however, the ‘changed’
information is passed up when the recursion returns. Below is the actual algorithm description

for Q-D copying with strueture-sharing.

‘ Q-D CoPYING WITH STRUCTURE-SHARING T

FUNCTION copy-dg-with-comp-arcs-share(dg-underef);
dg — dereference-dg(dg-underef);
IF (dg.copy is non-empty AND
dg.copy.generation = *unify-global-counter*) THEN
values(dg.copy, :changed);?
ELSE IF (dg = dg-underef) THEN
copy-node-comp-not-forwarded(dg);
ELSE copy-node-comp-forwarded(dg);
END;

FUNCTION copy-node-comp-not-forwarded{dg);
IF (dg.type = :atomic) THEN values(dg,nil);
;3 return original dg with ‘no change’ flag.
ELSE IF (dg.type = :Top) THEN values(dg,nil);
ELSE
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
newcopy — create-node();
newcopy.type + :complex;
newcopy.generation — *unify-global-counter*;
dg.copy «— newcopy;
FOR ALL arc IN dg.arc-list DO
newarc
— first value of copy-arc-and-comp-arc-share(arc);
push newarc into newcopy.arc-list;
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc
— first value of copy-arc-and-comp-arc-share(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list « nil;
values(newcopy,:changed);
ELSE
state — nil, arcs « nil;
dg.copy « dg*, dg.generation « *unify-global-counter*;
FOR ALL arc IN dg.arc-list DO
newarc,changed « copy-arc-and-comp-arc-share(arc); *
push newarc into arcs;
IF (changed has value) THEN
state — changed;
IF (state has value) THEN
newcopy +— create-node();
newcopy.type « :complex;
newcopy.generation «— *unify-global-counter*;
newcopy.arc-list — arcs;

dg.copy — newcopy:
values(newcopy,:changed);
ELSE dg.copy — nil; iireset copy field
values(dg,nil);

END:

FUNCTION copy-node-comp-forwarded(dg);
‘IF (dg.type = :atomic) THEN values(dg,:changed);
;; return original dg with ‘changed’ flag.
ELSE IF (dg.type = :Top) THEN values(dg,:changed);
ELSE
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
newcopy «— create-node();
newcopy.type «— :complex;
newcopy.generation — *unify-global-counter*;
dg.copy «— newcopy;
FOR ALL arc IN dg.arc-list DO
newarc
« first value of copy-arc-and-comp-arc-share(arc);
push newarc into newcopy.arc-list;
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc
— first value of
copy-arc-and-comp-arc-share(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list — nil;
values(newcopy,:changed);
ELSE
state — nil, arcs — nil;
" dg.copy — dg, dg.generation — *unify-global-counter*;
FOR ALL arc IN dg.arc-list DO
newarc,changed « copy-arc-and-comp-arc-share(arc);
push newarc into arcs;
IF (changed has value) THEN
state «— changed;
IF (state has value) THEN
newcopy « create-node();
newcopy.type «— :complex;
newcopy.generation «— *unify-global-counter*;
newcopy.arc-list «— arcs;
dg.copy — newcopy;
values(newcopy,:changed);
ELSE dg.copy «— nil;
values(dg,changed); ;; considered changed

END;

FUNCTION copy-arc-and-comp-arc-share(input-arc)
destination,changed

]

« copy-dg-with-comp-arcs-share(input-arc.value);
IF (changed has value) THEN
label — input-arc.label;
value — destination;
values(a new arc with label and value,:changed);
ELSE values(input-arc,nil); ;; return original arc

90

END;

Let us review a few examples. Figure 5-2 represents a unification between two graphs, each
containing large subgraphs which are not shared. The Q-D algorithim without structure sharing
described in the previous (filzxptm' would copy these subgraphs. However, with the introduction
of the structure-sharing scheme, only one node (i.e, the top node of the result graph dg3) and
only two arcs (arc-a and arc-b) are copied. The subgraphs dgl/< b > and dg2/< a > are not
copied at all since there was no modification in these subgraphs. Therefore, the original top
nodes of the subgraphs are directly pointed to by the newly created arcs arc-a and arc-b for
dg3. The arcs arc-a and arc-b are copied since the top nodes of the subgraphs were targets of
forwarding; therefore, :changed information is passed up. In our algorithm, if a complex node
is a target of forwarding although no copies are made of that node; it is considered modified
and the arcs and'nodes above that node are copied. Therefore, there will be one copy node, the
top node of dg3, and two new arcs pointing to the original nodes created in this unification.

We would like to provide one more example of Q-D structure-sharing (QDS). This one is
bit more complicated. First, Q-D unification is performed on the input graph, as we already
learned in the previous chapter. Now, after Q-D unification we do the QDSS copying. The
top node dg3 will be created since changes below will return the :changed flag upwards when
recursive unification returns. The arc-e is not copied at all since there was no change and
therefore. the entire arc-e is simply put in arc-list of dg3. dgl/< a > is not copied but the arc
a of dgl is copied since it is the target of forwarding. By the same token dg;2/<' b > is not

copied but the arc-b of dg2 is copied. This way, only one node (i.e., the root of dg3) and two

**Values’ return multiple values from a function. In our algorithm, two values are returned. The first value

is the result of copying, and the second value is a flag indicating if there was any modification to the node or to
any of its descendants.

*Temporarily set copy of the dg to be itself.
*Multiple-value-bind call. The first value is bound to ‘newarc’, and the second value is bound to ‘changed’.

0w
—_

dg3 (result)

Figure 5-2: A simple example of Q-D with structure-sharing (QDS)

arcs (a and b) are created to produce the result graph (Figure 5-3).

The following two figures (Figures 5-4, 5-5) show the similar structure-sharing. First tempo-
rary forwarding is performed after successful unifications. Then this time because dgl/< a,b >
was a target of forwarding, although dgl/< a,b > is not copied the arcs and nodes leading to

that node is copied. Thus, there will be 2 new nodes and 3 new arcs with this example.

5.3 Discussion

The structure-sharing scheme introduced in this section made the Q-D algorithm run signifi-
cantly faster. Provided in Chapter 6, the structure-sharing version of the Q-D algorithm (called
QDS or QDSS) runs at more than twice the spee.(l of the non-structure sharing version (QD).
It runs at about 4 times the speed of Wroblewski’s algorithm. The source of the gain is ap-

parent in that the number of created copies (nodes) and arcs is significantly reduced in the

92

cmp-arc-list(n)

forwafd(“) a

P,
2N

Figure 5-3: The result of Q-D structure-sharing

QDS scheme. We will see in Chapter 6 that whereas the QI) scheme created about 75 per-
cent of copies created by Wroblewski’s algorithm; the QDS scheme only created 19 percent
of Wroblewski’s algorithm. The original .gain of the Q-D algorithm was due to the fact that
it does not create any Over Copies or Early Copies, whereas the incremental copying scheme
inherently produces Early Copies when a unification fails. The proposed scheme makes the
Q-D algorithm completely avoid Redundant Copies as well by copying only the lowest nodes
that need to be copied due to destructive changes caused by only the successful unifications.
Since there will be no overhead associated with structure-sharing (except for passing up two
values, i.e., :changed/nil” and ‘the result node’, instead of one (result node) when recursion for

copying returns), the introduction of structure-sharing to the Q-I) scheme is an ideal addition

to the algorithm.

93

Figure 5-4: One more example

Pereira ([Pereira, 1985]) attained structure-sharing by having the result graph share infor-
mation with the original graphs by storing changes to the ‘environment’. As discussed in the
previous section, there will he the log(d) overhead (where d is the number of nodes in a graph)
associated with Pereira’s method that is required during node access in order to assemble the
whole graph from the ‘skeleton’ and the updates in the ‘environment’. In the proposed scheme,
since the arcs directly point to the original graph structures, there will be no overhead for
node accesses. Also, during unification, since changes are stored directly in the nodes (in the
quasi-destructive manner) there will he no overhead for reflecting the changes to graphs during
unification.

We share the principle of storing changes in a restorable way with Karttunen’s[1986] re-
versible unification and copy graphs only after a successful unification. Although both over-
copying and early-copying are avoided in his scheme, redundant-copying is not solved. This is so
because there is no structure-sharing involved in his scheme and therefore, the subgraphs in the

input graphs which are never modified are still copied after successful unifications. As discussed

94

dg3

2 new nodes {0,1} and 3 new arcs {a,b,c}

Figure 5-5: The result

in Chapter 4, although Emele and Kogure introduced structure-sharing, because their central
control structure is inherently incremental, early copying is inevitable if failure is detected as
we saw in Figures 4-12 and 4-13.

There is one potential problem with -the structure-sharing idea which is shared by each
of the schemes, including the method proposed here. This happens when operations other
than unification modify the graphs. (This is typical when a parser cuts off part of a graph for
subsequent analysis®.) When such operations are performed, structure-sharing of Top (variable)
nodes may cause problems when a subgraph containing a Top is shared by two different graphs
and when these graphs are used as arguments of a unification function (either as part of the

sawme input graph or as elements of dgl and dg2). When a graph that shares a Top node is

“For example, many parsers cut off a subgraph of the path X0 for applying further rules when a rule is
accepted.

not used in its ’ont;irm;_y, then the represented constraint postulated by the path leading to the
Top node is no longer the same. Therefore, when such a graph appears in the same unification
along with some other graph with which it DS-Shares the s:ﬁne Top node, there will be a false
FS-Sharing. (If-the graph is used in its entirety this is not a problem since the two graph
paths would unify anyway.) This problem happens only when neither of the two graphs that
DS-Shares the same Top node was unified against some other graph before appearing in the
same unification.” (If either was once unified, forwarding would have avoided this problem).

Consider the figures below. Unifying the shared graphs dgl and dg2 are fine with these two

"Such cases may happen when the same rule (such as V = V) augmented with a heavy use of convergence in
the Top nodes is applied many times during a parse.

96

examples.

dg2
dgl a
X Y
dg2

But this one incorrectly fails.

dgl
a b
X Y
a

The first ol the subsequent two figures shows that result was fine even with the structure-
sharing. However. the second figure shows that if we delete one arc-c from the result, an
incorrect result will be produced. This way, cutting off a part of a graph is a dangerous
operation when structure-sharing of variables is introduced. Many parsers cut off subgraph of
X0 paths and pass up the subgraph to become subgraph of Xn in other rule graphs. X0 {mother)
subgraph of the current unification are used as Xn (daughter) subgraph of future unifications,
We now see that such a sch.eme can cause a problem. The better method for passing up the
mother information using a unification-hased grammar is simply to represent the root (mother)
by <> instead of < X0 > as was used in PATR-II like formalisms. The grammar we used for
onr experiments was written that way and the parser does not cut of the subgraph of < X0 >;
mstead it passes the whole root node upward through the X-bar levels. Even if this problem
is solved there is another similar problem. It is due to the fact that reentrant variables extend
non-reentrant variables. Therefore, if a reentrant path containing a variable is unified with a
non-reentrant path with the same features, than the resulting reentrant graph (if the reentrant
one was dgl) would share the variable with the non-reentrant one. If this happens and if the
original non-reentrant graph and result reeentrant graph was within the same parse, then again
incorrect I'S-Sharing may result. Since, after a whole sentential parse, the constituent built
during the parse is no longer used, this problem would arise only during one parse.

As describe above, care should be taken in treating structure-sharing of variables. The
methods to avoid such a problem include the following: 1) As long as convergence of Top nodes
is used for features that are not passed up during parsing, the problems do not affect the result
of parse in any way — which is the case with the grammar in our experiment; and 2) Whenever
the same rule graph is used twice within a parse, make a copy of the rule graph when it is

used for the second time — which is the method taken in ATR’s Asura system ([Takahashi, et

93

al. 1992]). Although, structure-sharing of variables needs fox'a care, the efficiency gain from
sharing variables should m(‘)re than offset the efforts that need to be taken in order to guarantee
the correct behaviour. The chart in Appendix VIis taken from [Takahashi, et al, 1992]. It is
data taken from the above mentioned Asura experiments by Takahashi, ¢t a/ using ATR’s latest
large-scale grammar adopting the Q-D algorithms. The data shows that if structure sharing
of variables were not perforined, there would be only a 40 percent reduction in the number of
nodes copied. compared to the non-structure-sharing Q-D algorithm. However, if bottom nodes
are shared. there is an 85 percent reduction from the non-structure-sharing Q- scheme. Since
its current implementation copies a rule graph the second time it is using within one parse, if
we can avoid the second copying of rules as well, there could be an even greater reduction in

the amount of copying performed.

Chapter 6

Empirical Results

6.1 Comparison using actual grammar

This section describes the empirical results obtained from our sample implemtations of the Q-D
and QDS algorithms. Table 6.1 shows the summary of the results of our experiments using an
HP5G-based Japanese grammar for the conference registration telephone dialogue domain. We
used 16 sample sentences which are provided in the Appendix I. A representative portion of
the grammar is shown in Appendix II. The grammar used in the experiments was originally
developed by ATR as a large scale spoken-Japanese language grammar (containing over 10,000
grammar nodes) and is scaled down (about 3,000 gramnar nodes) to run on a Sun Sparc? with
28 mega bytes of physical memory at CMU.

We used Earley’s parsing algorithm for the experiment. Although it is scaled down from
the ATR’s current ASURA grammar, it covers many of the important linguistic phenomena
in spoken Japanese. The covered phenomena include coordination, case adjunction, adjuncts,
control, slash categ.ories, z-ero-pronouns, interrogatives, WH constructs, and some pragmatics

(speaker, hearer relations, politeness, etc.) ([Yoshimoto and Kogure, 1989]). The 16 sam-

100

ple telephone conversation-sentences used in the experiments varied from short sentences {one
word, i.e., hai ‘yes’) to relatively long ones (such as soredehakochirakarasochiranitourokuyoushi-
wovokuriitashimasu, which means ‘In that case, we [speaker] will send [polite] you [hearer] (the)
registration form.’). Thus, the number of (top-level) unifications per sentence varied widely
(from 7 to over 4,000).

"Unifs” in the table represents the total number of top-level unifications during a parse (i.e.
the number of calls to the top-level ‘unify-dg’, and not ‘unifyl’). Thus, ‘Unifs’ is not the total
number of unifications recursively called during a parse. It is only the number of top-level
unifications called by the parser during the analysis of a sentence. Normally, during a parse,
‘unify I’ is called several times more often than ‘unify-dg’ (‘unifys’). For example, with QDS, for
the parse of the sentence 12, ‘unify-dg’ (‘Unifs’) were called 3,421 times and during this parse,
unifyl was called 22.674 times. For sentence 13, it was 4,274 and 27,605 respectively. ‘USrate’
represents the ratio of successful unifications to the total number of unifications. ‘Nwmber of
Copies’ represents the number of nodes created during each parse. ‘CPU-Time (non-ge msec

user)’

is the actual parsing time for a sentence in milli-seconds (1/1000th of a second) not
counting the time taken for garbage collection. (The parser and the unification algorithms are
implemented in CommonLisp). ‘CPU-Time (total msec user)’ includes the time required for
garbage collection that proceeds in the background.

The algorithms compared were Quasi-Destructive Graph Unification with Structure-Sharing
(QDS), Quasi-Destructive Graph Unification (Q-D)), Wroblewski’s algorithm (W), and Kart-

tunen’s algorithm (K). These algorithms are described in Chapter 5 (QDS), Chapter 4 (Q-D),

and Chapter 3 (Karttunen' and Wroblewski?) of this thesis. We did not adopt Pereira’s algo-

'We updated his algorithm slightly to handle cycles and also only one array is used in our implementation to
store the contents of original graphs.

#We updated his algorithm as well to handle cycles.

101

rithm for the experiments since Karttunen’s algorithin has been reported to be more efficient.
Also, we could not find an efficient way of handling cycles using Pereira’s algorithm. We adopted
Wroblewski’s algorithm (enhanced by Kogure's method for handling cycles®) as representative
of the incremental copying schemes since a significant speed-up over Wroblewski’s has not been
reported in incremental schemes. Additionally, we could not find a method to handle cycles us-
ing Emele’s algorithm efficiently. Because of the ease of implementing Wroblewski’s algorithm,
it should be easy to compare the performance of any future incremental schemes against the
performance of Wroblewski’s algorithm and to indirectly compare them with the performance
of Q-D, QDS and Karttunen's algorithms reported in this thesis. The Earley parser and the
unification algorithms are written in CommonLisp* and are run on a SUN Sparc2 with 28 mega
hytes of RAM.

Using the data shown in the Table 6-1, Figure 6-1 plots the relation between the number
of nodes created (i.e., number of copies created) during a parse (‘Num of Copies’) and the
number of unifications during a parse (‘Unifs’) for the sample 16 sentences. We can see that
the increase in the number of nodes created during a parse is approximately linear to the increase
in the number of unifications during a parse consistently for the 16 sentences. The amount of
copies stays at around 75 percent of Wroblewski’s algorithm using the Q-D and Karttunen
algorithm. The Q-D and Karttunen algorithms behave in the same manner since they both
create copies only after successful unifications and neither use structure-sharing. About half
of the unifications were failures during the parses and the copies created during unifications

until the detection of failures in Wroblewski’s algorithm are the source of this reduction in

*Cycles can be handled in Wroblewski’s algorithm by checking whether an arc with the same label already
exists when arcs are added to a node. If such an arc already exists, we destructively unify the node which is
the destination of the existing arc with the node which is the destination of the arc being added. If such an arc

does not exist, we simply add it ([Kogure, 1989]). Thus, cycles can be handled very cheaply in Wroblewski’s
algorithm.

‘ Allegro ('L 4.0.1 [SUN 4],

102

Comparison of four methods - Number of Copies and CPU user time

Sent# Unifs USrate Num of Copies CPU-Time (non-gc msec user) CPU-Time (total msec user)
QDS Q-D&K W QDs Q-D W K QDS 4-D W K
1 7 0.42 18 79 96 233 184 250 250 233 184 250 250
2 370 0.38 1821 6333 8118 1867 1917 2534 9883 1867 1917 3900 12483
3 19 0.21 26 111 172 267 267 267 250 267 267 267 250
4 219 0.51 1263 4654 6036 1300 1567 1933 4334 1483 1567 1933 5850
5 2433 0.38 12321 50220 66204 11516 16233 24033 352817 18217 41050 51467 437567
6 245 0.37 937 3670 4569 1200 1450 1667 3850 1200 1450 1667 3850
7 7 0.42 18 79 96 233 200 300 250 233 200 300 250
8 314 0.48 1269 6009 7426 1600 2584 2800 7066 1600 2584 2800 10166
9 1996 0.32 8718 38024 53354 10334 10784 17516 223683 13067 30700 39383 320583
10 2811 0.42 13894 659762 86448 19617 28883 42849 596266 27067 54433 95733 784700
i1 223 0.43 1021 3910 5454 1267 1316 1683 4183 1267 1316 1683 4183
12 3421 0.34 17678 76161 103427 22817 27217 51750 653233 34067 51434 136434 924550
13 4236 0.38 32085 111307 135504 32699 41167 112683 957066 49616 93433 225933 1371850
14 95 0.44 197 1218 1504 450 617 717 750 450 617 717 750
15 87 0.48 389 1513 1685 6383 733 883 983 683 733 883 983
16 87 0.48 389 16513 1685 700 733 884 950 700 783 884 950
total 16570 92044 364563 481778 106683 135852 262749 2815814 152017 282668 564234 3879215
(% for total) 19.1% 75.7% 100%, 40.6% 51.7% 100% 1071.7Y% 27.0% 50.1% 100%, 687.5%
3.38% 4.8% 9.3Y% 100Y% 3.9% 7.3% 14.5% 1007

Table 6.1: Comparison of four methods - Number of Copies and CPU user time.

the Q-D and Karttunen’s schemes. Since failures are found somewhere in the middle of the
graphs, a 25 percent reduction in wasted copies seems reasonable with the observed unification
success rate. The reduction should be smaller with higher USrate and greater with lower
USrate. The substantial reduction of copies created in the QDS scheme shows the significance
of structure-sharing. Somewhat uneven behaviour of the QDS scheme reflects the variety of
linguistic plienemena covered in the 16 sentences. However, overall, the QDS scheme creates
significantly less copies than both Q-D (Karttunen) and Wroblewski’s schemes. The copies
created by QDS amount to only 25 percent® of the copies created by the. Q-D and Karttunen
schemes and 19 percent of the copies created by Wroblewski’s scheme.

Figure 6-2 represents the plotting of the parsing time based on the Table 6-1. Figure 6-3 is

the plotting of parsing time excluding Karttunen’s algorithm. The gabarge collection time is

*This figure not shown in the table.

103

‘Number of Nodes (Copies) Created vs Number of Unifs
Nodes Created x 103

140.00 =1 I =} Wroblewski

130.00 - cg.;f‘ffiu.“.u."f .
[20.00 — —
[10.00 — a_|
100.00 — -
90.00 f—]
R0.00 — a
70.00 —]
60.00 |— o _
50.00 a -
40.00 .
30.00 |— -
20.00 |-]
1000 — o —
0.00 —ub & '-—

| i ! | [l Fop-Level Unifs x 103
0.00 .00 2.00 3.00 4,00

Figure 6-1: Number of Copies vs Number of Unifications

not included in the CPU time.

Figure 6-4 and Figure 6-5 are plottings of parsing time including f;he time required for
garbage collection which is performed in the background. Therefore, the graphs plot the actual
parsing. time which is required for the parse of sample sentences. Becaubse of the significant
savings of wasted copies, the QDS runs significantly faster than the other algorithms. It only

requires 3.9 percent of Karttunen’s algorithm and 27.0 percent of Wroblewski’s algorithm,

104

CPU Time (non-ge msec user) vs Number of Unifs
CPU Time x 100

100 7= =1 Karttunen
* | Wroblewsk, ™
0.90 -G
0D T
0.80 _
0.70 _
0.60 t— . —
0.50 | —
0.40 —
0.30 I— —
020 —
0.10 — ®—
0 B g,
] 2
0.00 —mn wsl LR -
| ‘ ' | L dp-Level Unifs x 103
0.00 1.00 2.00 3.00 4.00

Figure 6-2: CPU time vs Number of Unifications

6.2 Comparison using a simulated grammar

We have seen in the previous section that the QDS algorithmn runs at about 25 times the speed
of Karttunen’s and 4 times the speed of Wroblewski’s algorithms. Also, the Q-D algorithm runs
at over 10 times the speed of Karttunen’s algorithm and 2 times the speed of Wroblewski’s algo-
rithm. The speed was obtained based upon the sample grammar which provides the unification
success rate (USRate) of about 40 to 48 percent with the 16 sample sentences. As we discussed

earlier, the strength of the Q-I) algorithms depends largely on the levels of USRate. With the

105

CPU Time (non-gc msec user) vs Number of Unifs
CPU Time x 103

I ! , Wrohlewski
110.00 — _1Q-D

100.00 f— —
90.00 — -
80.00 — -]
70.00 — , —
60.00 — —]
50.00 —
40.00 — 7
30.00 — o]
20.00 — o —
10.00 2 ° —

0.00 |-ws ¥ -

‘ ' | ' L_dp-Level Unifs x 103
0.00 1.00 2.00 3.00 4.00

Figure 6-3: CPU time vs Number of Unifications (without Karttunen’s algorithm)

lower USRate, the strength of the Q-D algorithms should be more conspicuous compared to the
incremental algorithms since significantly fewer copies get wasted due to unification failures.
In this section, we would like to examine the behaviour of the Q-D schemes under different
USRates. Since existing grammars normally produce cousistent USRates for different sentences,
we needed to simulate different USRates using an artificial grammar. Appendix I1II shows the
rules and definitions we used for the experiments. In order to simulate different USRates we first

define three simple rules (based upon HPSG/JPSG framework) as seen in Appendix ITL. Rulel is

106

CPU Time (total msec user) vs Number of Unifs
CPU Time x 100

1.40 F-I ‘;] Karttunen

roblewski

.30 — — ‘bD
1.20 — _1 QDS

1.10 = —]
1.00 -
0.90 -~ —]
0.80 -
0.70 —]
0.60 — —
0.50 — ~
0.40 — -~

0.30 — : —

x @

xXo

0.00 (—e= ol

3
x
‘ | | ‘ L Fdp-Level Unifs x 103
0.00 1.00 00 3.00 4.00

3]

Figure 6-4: CPU time including the background GC time.

the Head-Feature Principle, Rule2 is the Subcat Principle and Rule3 is the Adjunct Principle.
The ‘rule->graph’ function in the Appendix reads the PATR-II like rules and produces the
directed graphs. Therefore, the rules look as below using our notation (taken from the actual

output of the system):

rulel:

X01[[DTRS XO2[[DTR1 XO03[[SYN X04[[HEAD X05[1111]
[SYN XO06[[HEAD X05]]

107

CPU Time (total msec user) vs Number of Unifs
CPU Time x 103

! | I Wroblewski
220,00 — " “b_D
QDS
200,00 {— -
180.00 — _
16000 +— —
140.00 . -
120.00 =]
100.00 — . —
a
80.00 -]
60.00 —]
n o [»] 'Y
40.00 — » o]
=] ° e
20,00 — ° —
(<]
0.00 [—wa oA .
l I I !] Fdp-Level Unifs x 103

0.00 1.00 2.00 3.00 4.00

Figure 6-5: CPU time (incl. GC) vs Number of Unifications (without Karttunen’s
algorithm)

rule2:
X0t [[DTRS X02[[DTR1 XO3[[SYN X04[{HEAD X0S[[COH X06[]111]
[DTR2 XO7[[SYN X08L[SUBCAT XO09[[FIRST X06]

[(REST X10[111111]
[SYN X11[[SUBCAT X10]]

rule3:

X01[[DTRS X02[[DTR1 XO03[[SYN X04[[HEAD XOS[[COH X06[1111]
[DTR2 X061]

We combine these three rules, i.e., (unify-dg (unify-dg rulet rule2) rule3)), and produce one

108

rule graph dgl which is:

dgl:
X01[[DTRS XO02[[DTR1 X03[[SYN X04[[HEAD X0S[[COH X06[[SYN XO7[[SUBCAT XO8[[FIRST X06]

(REST X09(1111111]
[DTR2 X06]]

[SYN X10[[HEAD X05]
[SUBCAT X09]]

Note that dgl represents the three basic principles of JPSG/HPSG and therefore character-
izes typical unification-based grammar rules which are used many times during a parse. Note
also that dgl is cyclic. Given that the cycle is the result of combining the principles, the appli-
cation of the cyclic rules are a common occurance using the JPSG/HPSG grammar formalisms

like this one.

Now, we provide two lexical entries which are mutually exclusive. (Unification between

them would fail.)

lex1: .
X01[[SYN XO02[[HEAD X03[[AGR XO4[[GEN XO05 FEM]
{NUM X06 SING]
[PERS .X07 THIRD]]
[CASE X08 -MINIATIVE]
[MAJ X09 N]
[NFORM X10 NORMAL]
[PRED X11 MINUS]1]

Jex2:
X01[[SYN XO02[[HEAD X03[[AGR XO4[[GEN X05 FEM]
[NUM X06 SING]
[PERS X07 THIRDI]
[CASE X08 OBJECTIVE]
[MAJ X09 NI
[NFORM X10 NORMAL]
[PRED X11 MINUS]]]

We unify dgl with lex] and get dg2:

109

dg2:
X01[[DTRS X02[[DTR2 X03[[SYN X04[[SUBCAT XOS[[REST X06[]11
: [FIRST X03]111]
[DTR1 XO7[[SYN X08[[HEAD XO09[[COH X03]
[PRED X10 MINUS]
{NFORM X11 NORMAL]
MAJ Xx12 N]
[CASE X13 -MINIATIVE]
[AGR X14[[PERS X15 THIRD]
[NUM X16 SING]

[GEN X17 FEM1]1111]
[SYN X18[[SUBCAT X06]

[HEAD X09]]

We also unify lex2 with dgl and get dg3:

dg3:
X01[[DTRS X02[[DTR2 XO3[[SYN X04[[SUBCAT XO0S[[REST X06[1]
[FIRST X03]1111
[DTR1 XO7[[SYN XO08[[HEAD X09[[CODH X03]
[PRED X10 MINUS]
[NFORM X11 NORMAL]
[MAJ X12 N]
[CASE X13 OBJECTIVE]
[AGR X14[[PERS X15 THIRD]
[NUM X16 SING]

[GEN X17 FEM11111]
[SYN X18[[SUBCAT X06]

[HEAD X09]]

The experiment (as provided in Appendix IIT) is as follows: We successfully unify dgl with

dg2. We unsuccessfuly unify dg2 with dg3. We plot the relation between the CPU time (non-gc)

and the number of top-level unifications for different numbers of top-level unifications. (Namely

10, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, and 102400 times.) We collect

data for USRate 0.0, 0.25, 0.5, 0.75, and 1.0. When all unifications are hetween dg2 and dg3

then the USRate is 0.0. If one out of four is between dg2 and dg3 and the rest are between

dgl and dg2 then the USRate is 0.25. The described experiment was performed for 5 different

110

kinds of USRates. We compared the Q-D algorithm and Wroblewski’s algorithm. We did not
compare QDS since due to structure-sharing, a fair comparison cannot be made. It is because
in this experiment. same p;l:aphs are unified many times and therefore the subgraphs will simply
be shared.using the QDS. Thus, the QDS would not even need to unify the subgraphs by simply
returning *T* when ‘eq’ (or =) holds.

Figures 6-6 to 6-10 show the results of the experiments® under different USRates. One thing
to be noted is that the (-D algorithm runs faster than Wroblewski’s even with the 100 percent
unification success rate. It is probably bhecause Wroblewski’s algorithm needs two set-difference
operations (complementarcs) in order to create copies incrementally. Also, handling cycles in

Wroblewski’s algorithm is adding a small amount of overhead to his algorithm.

®Experiments were conducted using CMU-CommonLisp run on an IBM RT with 12 mega bytes of RAM. The
rules and the code provided in Appendix 11l are put in public domain. The code can be used as a bench mark
test of the future graph unification algorithms. It is ideal for testing the behaviour under heavy use of cyclic
feature structures as well as standard acyclic feature structures.

Il

CPU Time (non-gc msec user) vs Number of Unifs: USRATE(.0
CPU Time x 10

[[Wroblewski
600.00 |~ . QD

550.00 -
500.00 — —
450,00 - —
400.00 — —
350.00 |- —
300.00 " —
250.00 | —
200.00 + _
150.00 . |
100.00 -
50.00 — . _

0.00 & —

I - I Fop-Level Unifs x 103
0.00 50.00 100.00

Figure 6-6: CPU time vs Number of Unifications (USRATE 0.0)

112

CPU Time (non-gc msec user) vs Number of Unifs: USRATE(.25
CPU Time x 103

600.00 1] Wroblewski

550.00 |- .
500.00 —
450,00 _
400.00 {— _
350.00 | ~
300.00 |- —
250.00 —
200.00 {— -~
150.00 |— . g~
100.00 | _
50.00 _

0.00 —&° o

| ! LFdp-Level Unifs x 103
0.00 50.00 100.00

Figure 6-7: CPU time vs Number of Unifications (USRATE 0.25)

113

CPU Time (non-gc msec user) vs Number of Unifs: USRATE(.5
CPU Time x 103

. T 'Vv,—'——
550.00 ! i [_] Wrohlewski

S00.00 = —
450.00 — —
400.00 — —
350.00 — —
300.00 — —
250.00 —
200.00 — —
150.00 a .
100.00 — ~—
50.00 — - —

a0

0.00 —#° —

Fop-Level Unifs x 103
0.00 50.00 100.00

Figure 6-8: CPU time vs Number of Unifications (USRATE 0.5)

114

CPU Time (non-gc msec user) vs Number of Unifs: USRATE(.75
CPU Time x 107

] I ‘Wroblewski
500.00 {— B P ea—

450.00 }-— -]
400,00 —]
350.00 [~ o]
300,00 |- ' _
250.00 | . |
200.00 |— .
150.00 |— =
160.00 |— ~
5000 = . -

0.00 —# -

l | L p-Level Unifs x 103
0.00 50.00 100.00

Figure 6-9: CPU time vs Number of Unifications (USRATE 0.75)

115

CPU Time (non-gc msec user) vs Number of Unifs : USRATE1.0
CPU Time x 103

I [| Wroblewski
45000 - QD

400.00 — —
350.00 — -
300.00 — —
250.00 — —]
200.00 — —
150.00 — —
100.00 —]

50.00 — |

a]]

a
0.00 |—dé _

1 ' Ldp-Level Unifs x 103
0.00 50.00 100.00

Figure 6-10: CPU time vs Number of Unifications (USRATE 1.0)

116

Chapter 7

Concluding Remarks

Unification-based constraint processing has become a de facto standard of natural language
processing. Unification-based postulation has been accepted as the central tool for representing
constraints in modern theoretical and computational linguistics. In massively parallel natural
language processing, graph unification can be adopted to remedy the weakness of so-called
marker-passing methods in processing syntactic constraints. In fact, Q-D algorithim was de-
veloped during the course of such a umssjvely-paraﬂel natural language research, in which we
needed an effectively parallelizable unification ([Tomabechi, 1991b], [Tomabechi, 1991c]). Given
that recursions into shared arcs were parallel-processed in the parallel-processing environment,
the problem of early copying inherent in incremental schemes were devastating in the parallel
unification environment. Although the topic of parallel unification is not the scope of this thesis,
[Fujioka, et al, 1990] describes some results in parallizing the Q-D algorithm. Since the Q-D al-
gorithm performs constraint checking without the burden of copying, we found that unification
failure can be found extremely quickly by parallely spawning the recursinve unifyls deep into
the feature structures. The well-known weakness of unification-based natural language process-

ing has been slowness of speed due to the time required by unification algorithms. Given that

117

more than 90 percent and often as much as 98])/ercont of parsing time is consumed by graph
unification alone, the speed-up effect of improving graph unification algorithms should naturally
have a greater impact than the effect of improving the speed of parsing methodologies alone.
Yet. although there has been some successful and important research in speeding up parsing al-
gorithms (such as {Tomita, 1985]), efforts to improve unification alg‘érithms were relatively rare
compared to parsing research efforts. Perhaps the reason for this could be that most natural
language systems to date did not contain a very large grammar and, therefore, the performance
bottleneck by unification algorithms remained largely unnoticed. Thus, it is not surprising that
sowe of the important unification-hased research came from places such as SRI, MCC, ATR
and CMU. where large-scale natural language processing projects were being conducted. One
early and important research effort in the feature-structure unification-based method was by
Pereira. Actually, the control structure of our unifyl is similar to that of Pereira[1985]. It is
the data structure of our scheme that contributes to the avoidance of the log(d) overhead that
his algorithm inevitably produces to assemble feature structure by looking at the skeleton and
the environment. In the proposed scheme, instead of storing changes to the argument graphs in
the environment, we store the changes in the graph structures themselves (non-destructively);
therefore, there will be no overhead associated with node accesses.

We share the principle of storing changes in a restorable way with Karttunen’s reversible
unification and we copy graphs only after a successful unification. In Karttunen’s method,
whenever a destructive chaﬁge is about to be made, the attribute value pairs! stored in the body
of the node are saved into an array. These values are restored after the top level unification
is completed. (A copy is made prior to the restoration operation if the unification was a

successful one.) Thus, in Karttunen’s method, each node in the entire argument graph that

'Te., arc structures: ‘label’ and ‘value’ pairs in our vocabulary.

118

has been destructively modified must be restored separately by retrieving the attribute values
saved in an array and by resetting the values into the dag structure skeletons saved in another
array. In the Q- method, one increment to the global counter can invalidate all of the changes
made to the nodes. There is also a cost for reversing the unification operation every time
unification is completed; this cost is also proportionate to the size of the input graph. Thus, if
the input graph grows (which is likely with a large-scale system) then the cost for saving and
reversing changes can be high. There is also a hidden cost of Karttunen’s method associated
with the use of global arrays to store changes. It is the cost associated with resizing the arrays
which are used to store the original information. These global arrays for saving require original
allocation of memory. If the allocated memory is too big, then we will be wasting the unused
mewory cells; if it is too small then there will be dynamic array resizing operations during
uniﬁcati‘on which can be costly. Since the number of destructive operations during unification
varies significantly from sentence to sentence and from grammar to grammar, determining the
desirable initial array size for Karttunen’s scheme is non-trivial.

In the delayed schemes, [Karttunen and Kay, 1985] considered the use of lazy evaluation
to delay destructive changes during unification. [Giodden, 1990] presented one method to de-
lay copying until a destructive change is about to take place. Godden uses delayed closures to
directly implement lazy evaluation during unification. While it may be conceptually straightfor-
ward to take advantage of delayed evaluation functionalities in programming languages, actual
efficiency gain from such a scheme may not be significant. This is so because such a scheme
simply shifts the time and space consumed for copying to creating and evaluating closures and

no significant saving can be expected overall.? Additionally, [Emele, 1991] also identifies a

?Instead creating closures in comparison to creating copies could be costly in actual implementations since
‘defstruct’ operation which is normally used to create nodes (copies) is often effectively optimized in many
commercial compilers while delayed closures are seldom optimized.

119

source other problem of Godden’s method in the operations which are needed to search for
already existing instances of active data structures in the copy environment and merging of
environments for successive unification causing an additional overhead. Kogure and Emele also
use the lazy evaluation idea to delay destructive changes. Both Kogure and Emele avoid direct
usage of delayed evaluation by using pointer operations. Kogure’s method also requires special
dependency information to be maintained; this adds an overhead along with the cost of travers-
ing the dependency arcs. Also, a second traversal of the set of dependent nodes is required for
actually performing the copying. Emele proposes a method of dereferencing by adding environ-
ment information that carries a sequence of generation counters so that a specific generation
node can be found by traversing the forwarding links until a node with that generation is found.
While this allows undoing destructive changes cheaply by backtracking the environment, every
time a specific graph is to be accessed the whole graph needs to be reconstructed by following
the forwarding pointers sequentially, as specified in the environment list (except for the root
node), in order to find the node that shares the same generation number as the root node.
Therefore the overhead for dereferencing the environmental chain could be steep if a graminar
is very large and if the same graphs are unified many times to create a large constituent.

Like Wroblewski’s method, all three lazy methods (i.e, Godden’s, Kogure’s and Emele’s)
suffer from the problem of Larly Copying as defined in the thesis. This is so because the copies
that are incrementally created up to the point of failure during the same top-level unification
are all wasted. Since the future unification result of other non-deterministic recursion into
shared arcs is unknown at the point of a particular successful recursion into one shared arc, if
unification succeeds with the arc, then copies are created. If a failure is detected later in some
other recursive unification into the sharec arcs, then the copies created until that point will

all get wasted. We have explained that if we are to avoid such early copying of incremental

120

copying schemes, then all copying must be delayed until after the entire top-level unification.
That in essence is what the Q-D algorithm does. Thus, the Q-D algorithm may be seen as
one extreme form of lazy copying scheme as well. The strength of it however, is that there is
virtually no overhead for this full delaying of copying. The temporary forwarding pointers and
comp-arc-list are utilized along with the global timing (generation) counter so that all copying
can be effectively delayed until after the entire top-level unification. All changes recorded as
temporary forwarding links and as updates to comp-arc-list can be invalidated very cheaply
(constant time) by just one increment of the global timing counter.

The algorithm presented in this thesis has been tested using the grammar developed at CMU
and at ./V\TR, and has been demonstrated to consistently run fast with large scale grammars.
At CMU. the algorithm has been integrated into the new JANUS multi-language speech-to-
speech translation project. Especially significant, ATR adopted the algorithm for the latest
Asura project, in which a fully separate implementation of the algorithm integrating Kogure’s
method for negative feature structures ([Kogure, 1992]) and Kasper’s method for disjunctive
feature structures ([Kasper, 1987])). The final data from their experiments will be available
during 1993 when the current ATR Interpreting Telephony project is completed and the final
report is produced. The preliminary data that are currently available (such as [Takahashi, et
al, 1992]) has confirmed the performance of the algorithm with a very large grammar. More
experiences with the algorithm should be available from other research institutes from around
the world. Among them are the University of Tuebingen, the University of Karlsruhe, Keio
University, Tokyo Institute of Technology, and Tokushima University who have already started
using the algorithm in théir projects. With the capacity to handle variables, éonvergence, and
cycles, and with the ease of implementing it, the algorithm should be easily integrated into

existing and future natural language processing mechanisms as a central constraint processing

121

algorithm of the systems.

122

Bibliography

[Bresnan and Kaplan, 1982) Bresnan, J. and R. Kaplan “Lexical-Functional Grammar: A For-
mal System for Grammatical Ropwsmlmtlon” ln J. Breshan (ed) The Mental Representation
" of Grammatical Relations, MIT Press, 1982.

[Earley. 1968] An cfficient conteat -free parsing algorithm. Doctoral dissertation, Carnegie Mel-
lon University,

[Ewele. 1991] Emele, M. “Unification with Lazy Non-Redundant Copying”. In Proceedings of
ACL-91, 1991.

[Franz, 1990] Franz. A. A [’msm Jor HPS(G Report No. CMU-LCL-90-3, Carnegie Mellon Uni-
versity.

[Fujioka, ¢t al, 1990] Fujioka, T., Tomabechi, H., Furuse, O., and H. lida Parallelization Tech-
nique Jor Quasi-Destructive (:I(L])/L Um/uutzon Algorithm, 90-NL-80, Information Processing
Society of Japan, 19990.

[Gazdar, et al, 1985) Gazdar, G., G. Pullum, and L. Sag Generalized Phrase Structure Gram.-
mar. Harvard University Press, 1085.

[Gazdar and Mellish, 1989] Gazdar, G., and C. Mellish Natural Language Processing in Lisp.
Addison Wesley, 1989.

[Godden, 1990] Godden, K. “Lazy Unification” In Proceedings of ACL-90, 1990.
[Gunji, 1987] Gunji, T. Japanese Phrase Structure Grammar. D.Reidel, Dordrecht, 1987.
[Jackendoff, 1977] Jackendoff, R. X-Bar Syntaz: A Study of Phrase Structure, MIT Press, 1977.

[Karttunen, 1986a)] Karttunen, L. D-PATR: A Development Environment for Unification- Based
Grammars. Report CSLI-86-61. Center for the Study of Language and Information, 1986.

(Karttunen, 1986D)] Karttunen, L. “D-PATR: A Development Environment for Unification-
Based Grammars”. In Proceedings of COLING-86, 1986. (Also, Report CSLI-86-61 Stanford
University).

[Karttunen and Kay, 1985] Karttunen, L. and M. Kay. “Structure Sharing with Binary Trees”.
In Proceedings of AC'L-85, 1985.

123

[Kasper, 1987] Kasper, R. “A Unification Method for Disjunctive Feature Descriptions”. In
Proceedings of ACL-87, 1987.

[Kay. 1984] Kay. M. “Functional Unification Grammar: A Formalism for Machine Translation.”
In Proceedings of COLING 'S/, 1984.

[Kogure, 1989] Kogure, K. A Study on Feature Structurcs and Unification. ATR Technical Re-
port. TR-1-0032, 1988.

[Kogure, 1990] Kogure, K. “Strategic Lazy Incremental Copy Graph Unification”. In Proceed-
ings of COLING-90, 1990.

[Kogure, 1992] Kogure, K. “A Treatment of Negative Description of Typed Feature Struc-
turees”. In Proceedings of CCOLIN(G-92, 1992,

[Morimoto, ¢t al, 1990] Morimoto, T., H. l[lda, A. Kurematsu, K. Shikano, and T. Aizawa.
“Spoken Language Translation: Toward Realizing an Automatic Telephone Interpretation
System™. In Proceedings of InfoJapan 1990, 1990.

[Pereira and Shieber, 1984] Pereira, . and S. Shieber “The Sewmantics of Grammar Formalisms
Seen as Computer Languages”. In Proceedings of COLING8/.

[Pereira and Warren, 1980] Pereira, F. and D). Warren “Definite clause grammars for language
analysis — a survey of the formalisms and a comparison with augmented transition networks.”
In Artificial Intelligence 13, 1980.

[Pereira, 1985] Pereira, F. “A Structure-Sharing Representation for Unification-Based Gram-
mar Formalisms”™. In Proceedings of ACL-85, 1985,

[Pollard, 1984] Pollard, C. Generalized Phrase Structure CGrrammars, Head Grammars and Nat-
ural Language, Ph.D Dissertation, Stanford University. 1984

[Pollard and Sag, 1987] Pollard, C.. and I. Sag Information-based Syntax and Semantics. Vol 1
(CSLI, 1987.

¥

[Shieber, et al, 1983] Shieber, S., H. Uszkoreit, J. Robinson, and M. Tyson The Formalism and
Implementation of PATR-II. In Research on Interactive Acquisition and Use of Knowledge.
Artificial Intelligence Center, SRI International, 1983

[Shieber, 1986] Shieber, S.-An Introduction to Unification-based Approaches to Grammar CSLI
Lecture Notes Number 4, Center for the Study of Language and Information. 1986.

[Takahashi, et al, 1992] Takahashi, M., H. Matsuo, K. Sagi, T. Tashiro, and M. Nagata “A
Structure sharing method for Unification of Cyclic Feature Structures”. In Proceedings of
the National Conference of Information Processing Society of Japan, Fall, 1992.

[Tomabechi, 1991a) Tomabechi, H. “Quasi-Destructive GGraph Unification”. In Proceedings of
ACL-91. 1991.

124

[Tomabechi, 1991b] “A Graph Propagation Architecture for Massively-Parallel Processing of
Natural Language”. In Proceedings of The Thirteenth Annual Conference of the Cognitive
Sctence Society, 1991, '

[Tomabechi, 1991¢] Tomabechi, H. “MONA-LISA: Multimodal Ontological Neural Architec-
ture for Linguistic Interactions and Scalable Adaptations”. In Proceedings of the International
Workshop on Future Generation Nalural Language Systems, 1991.

[Tomabechi, 1992] Tomabechi, H. “Quasi-Destructive Graph Unification with Structure-
Sharing”. In Proceedings of COLING 92, 1992,

[Tomabechi and Levin, 1989] Tomabechi, H. and L. Levin “Head-driven Massively-parallel
Constraint Propagation: Head-features and subcategorizalion as interacting constraints in
associative memory”, In Proccedings of The Eleventh Annual Conference of the Cognitive
Setence Socicty, 1989,

[Tomita. 1985] An cfficient context-free parsing algorithin for natural languages and its appli-
~cattons Doctoral dissertation, Carnegie Mellon University,

[Tomita and Carbounell, 1987] Tomita. M. and J. Carbonell. “The Universal Parser Architecture
for Knowledge-Based Machine Translation”. In Proceedings of IJC'AI87, 1987.

[Tomita and Knight, 1987] Tomita, M. and K. Knight Pseudo-Unification and Full- Unification
CMU-CMT-88-MEMO, Carnegie Mellon University, 1987.

[Warren, 1983] Warren, D. An Abstract Prolog Instruction Set. Technical Note 309, SRI Inter-
national, 1983,

[Wroblewski, 1987] Wroblewski, D.“Nondestructive Graph Unification”. In Proceedings of
AAALST, 1987, ’

[Yoshimoto and Kogure, 1989] Yoshimoto, K. and K. Kogure Japanese Sentence Analysis by
means of Phrase Structure Grammar. ATR Technical Report. TR-1-0049, 1989.

Appendix I: Sample Sentences

SENT1

SENT?2

SENT3

SENT4

SENTS

SENT6

SENT7

SENTS8

SENTS

SENT10

SENT11

SENT12

SENT13

""MOSHIMOSHI"
‘Hello.’

"SOCHIRAHATSUUYAKUDENWAKOKUSAIKAIGIJIMUKYOKUDESUKA"
‘Is this the secretariat of the International
Interpreting Telephony Conference?’

IIHAIII
‘Yes .’

"SQUDESU"
it is?’.

"WATASHIHAKAIGINIMOUSHIKOMITAINODESUGA"
‘I would like to register for the conference.’

"TOUROCKUYOUSHIHAARIMASUKA"
‘Do you have the registration form.’

HIIEII
‘No.’

"WAKARIMASHITA"
‘(I) see.’

"SOREDEHAKOCHIRAKARASOCHIRANITOUROKUYOUSHIWOOOKURIITASHIMASU"
‘Then, we will send you the registration form.’

"ONAMAETOGOZYUUSYOWOONEGAISHIMASU"
‘Your name and address, please.’

"O0SAKASHIKITAKUCYAYAMACHIBNO23%SUZUKIMAYUMIDESU"
‘Oosaka city, Kitakucyaya town, 6-23, Suzuki Mayumi, it is.’

"KOCHIRAKARASOCHIRANITOUROKUYOUSHIWOSHIKYUUNIOOKURIITASHIMASU"
‘We will send you the registration form immediately.’

"WAKARANAITENGAGOZAIMASHITARAWATAKUSHIDOMONIITSUDEMOOKIKIKUDASAT"
‘If (you) have questions, please let us know anytime.’

126

SENT14 "ARIGATOUGOZAIMASU"
‘Thank you very much.’

SENT15 "SOREDEHASHITSUREISHIMASU"
‘Then, good bye.’

SENT16 "DOUMOSHITSUREISHIMASU"
‘Thank you and good bye.’

127

Appendix II: Sample Grammar

This is a representative portion of the grammar used in the experiments reported in Chapter 6.

The grammar is based upon ATR grammar ([Yoshimoto and Kogure, 1989)) using JPSG/HPSG

analysis.

(rule p ==> (n p)

(<0 head> == <2 head>)

(<0 subcat> == <2 subcat rest>)
(<0 slash> == <1 slash>)

(<1> == <2 subcat first>)
(<0 wh> == <1 wh>)

(<0 sem> == <2 sem>)

(<0 semf> == <2 semf>)

(<0 prag> == <{ prag>))

(rule v ==> (p v)

(<0 head> == <2 head>)

(<0 subcat> == <2 subcat rest>)

(<0 slash> == <2 slash>)

(<1> == <2 subcat first>)

(<2 wh wh-ind> == =)

(<0 wh> == <1 wh>)

(<0 sem> == <2 sem>)

(<1 head form> == (:or ga wo ni kara))
(<0 prag speaker> == <1 prag speaker>)

(<0 prag speaker> == <2 prag speaker>)

(<0 prag hearer> == <1 prag hearer>)

(<0 prag hearer> == <2 prag hearer>)

(<0 prag restr first> == <2 prag restr>)

(<0 prag restr rest> == <! prag restr>))
(rule v ==> (p v)

(<0 head> == <2 head>)

(<0 subcat> == <2 subcat rest>)

(<0 slash> == <2 slash>)

<1> == <2 subcat first>)

(<2 wh wh-ind> == +)

(<0 wh> == <2 wh>)

(<0 sem> == <2 sen>)

(<1 head form> == (:or ga wo ni to))

(<0 prag speaker> == <] prag speaker>)

(<0 prag speaker> == <2 prag speaker>)

(<0 prag hearer> == <1 prag hearer>)

(<0 prag hearer> == <2 prag hearer>)

(<0 prag restr first> == <2 prag restr>)

(<0 prag restr rest> == <1 prag restr>))

(rule n.==> (p n)

128

(<1
(<0
(<1
(<0
(<0
(<0
(<0
(<0

head coh>
head>

head form>
subcat>
foot slash>
sem reln>
sem arg-1>
sem arg-2>

n ==> (v n)
head>

head cform>
subcat>
gslash first
slash first
slash>

sem>

(rule
(<0
(<1
(<1
(<1
(<1
(<0
(<2
(<1
(<0

[restr 7verb_s
(<0

sem>
sem>

prag>

v ==> (v)
head ctype>
lex>

head>
subcat>
slash rest>
slash first>
wh>

sem>

subcat first

prag>

(rule
(<0
(<1
(<0
(<0
(<0
(<0
(<0
(<0
(k1

'(<0

v ==> (v aux
head>
subcat>
slash>

(rule
(<0
(<0
(<0
(<1>
(<0
(<0
(<0
(<0
(<0
(<0
(<0

sem>
prag
prag
prag
prag
prag
prag

speaker
speaker
hearer>
hearer>
restr f
restr r

v ==> (v vin
head>
subcat>
slash>

head cform>
lex>

(rule
(<0
(<0
(<0
(<1
(<2
(<1>
(<2 subcat rest>

== <2>)
== <2 head>)
== (:or to *))
== <2 subcat>)
== <2 foot slash>)
== <1 sem relnd>)
== <1 sem arg-1i>)
== <2 sem>))
== <2 head>)
== adnm)
== end)
sem> == <2 sem>)
senf> == <2 semf>)
== <1 slash rest>)
== 7noun_sem)
== 7yerb_sem)
== [[parm 7noun_sem]
em]])
== <1 prag>))
= <1 head ctype>)
== +)
== <1 head>)
== <1 subcat rest>)
== <1 slash>)
== <1 subcat first>)
== <1 wh>)
== <1 sem>)
> == [[head [[pos p]111)
== <1 prag>))
v)
== <2 head>)
== <2 subcat rest>)
== <1 slash>)
== <2 subcat first>)
== <2 sem>)
> == <1 prag speaker>)
> == <2 prag speaker>)
== <1 prag hearer>)
== <2 prag hearer>)
irst> == <2 prag restr>)
est> == <1 prag restr>))
£1)
== <2 head>)
== <1 subcat>)
== <1 slash>)
== gtem)

o
It

-)
<2 subcat first>)
end)

129

(<0 wh>

(<0 sem>

(<0 prag speaker>

(<0 prag speaker>

(<0 prag hearer>

(<0 prag hearer>

(<0 prag restr first>
(<0 prag restr rest>

<1 wh>)

<2 sem>)

<1 prag speaker>)
<2 prag speaker>)
<1 prag hearer>)
<2 prag hearer>)
<1 prag restr>)
<2 prag restr>))

It
It

i
1]

[i}
il

(rule v ==> (p v)
(2>
(<0 head>

‘(<1 head form> =
(<0 subcat>

<1 head coh>)
<2 head>)
(:or ha mo))
<2 subcat>)

0
i

(<0 slash> == <2 slash rest>)

(<0 sem> == <2 sem>)

(<1 sem> == <2 slash first sem>)

(<1 senf> == <2 slash first semf>)
(<0 wh> == <2 gh>)

(<0 prag speaker> == <1 prag speaker>)
(<0 prag speaker> == <2 prag speaker>)

1]
i}

(<0 prag hearer>
(<0 prag hearer>
(<0 prag restr first>
(<0 prag restr rest>

<1 prag hearer>)
<2 prag hearer>)
<2 prag restr>)

<1 prag restr>))

"
i n

(rule n ==> (v n)

(<0 head> == <2 head>)
(<0 subcat> == <2 subcat rest>)
(<1> == <2 subcat first>)
(<1 head cform> == adnm)
(<2 head form> == no)
(<0 slash> == <1 slash>)
(<0 wh> == <1 wh>)
(<0 sem> == <1 sem>)
(<0 prag> == <1 prag>))
(rule v ==> (n v)
(<0 head> == <2 head>)
(<0 subcat> == <2 subcat rest>)
(<1> == <2 subcat first>)
(<2 head modl> == [[copl +11)
(<0 slash> == <] slash>)
(<0 wh> == <1 gh>)
(<0 sem> == <2 sem>)
(<0 prag speaker> == <1 prag speaker>)

(<0 prag speaker>
(<0 prag hearer>
(<0 prag hearer>
(<0 prag restr first>
(<0 prag restr rest>

= <2 prag speaker>)
<1 prag hearer>)
<2 prag hearer>)
<2 prag restr>)

<1 prag restr>))

(rule v ==> (adv v)
(<0 head>
(<0 subcat>

<2 head>)
= <2 subcat restd>)

130

(<1>

(<2
(<0
(<0
(<0
(<0
(<0
(<0
(<0
(<0
(<0

(rule
(<2>
(<0
(<0
(<0
(<2
(<0
(<0
(<0
(<0
(<0
(<0
(<0
(<0

(rule
(<0
(<0
(<1>
(<0
(<1
(<0
(<2
(<0
(<0
(<0
(<0
(<0
(<0
(<0

head modl>
slash>

wh>

sem>-

prag speaker>
prag speaker>
prag hearer>
prag hearer>

prag restr first>
prag restr rest>

v ==> (adv v)

head>

subcat>
slash>

wh wh-ind>
wh>

sem>

prag speaker>
prag speaker>
prag hearer>
prag hearer>

prag restr first>
prag restr rest>

==> (v auxv)
head> ==
subcat> ==

slash> ==
wh wh~ind> ==
wh> ==
head modl> ==
sem> ==
prag speaker>
prag speaker>
prag hearer>
prag hearer>

prag restr first>
prag restr rest>

<2 subcat first>)
= [[copl +11)

<1 slash>)

<1 wh>)

<2 sem>)

<1 prag speaker>)
<2 prag speaker>)
<1 prag hearer>)
<2 prag hearer>)
<2 prag restr>)
<1 prag restr>))

It

I
1

<1 head coh>)
<2 head>)

<2 subcat>)
<2 slash>)

ihonon
wouwn
1

~

<t wh>)

<2 sem>)

= <1 prag speaker>)
<2 prag speaker>)
<1 prag hearer>)
<2 prag hearer>)
<2 prag restr>)
<1 prag restr>))

<2 head>)
<2 subcat rest>)
<2 subcat first>)
<1 slash>)
+)
end)
[[sfp-1 kall)
<2 sem>)

== <1 prag speaker>)
= <2 prag speaker>)
= <1 prag hearer>)
<2 prag hearer>)
<2 prag restr>)
<1 prag restr>))

I
1t

131

Appendix III: A Bench-Mark Code to Produce Simulated Gram-

mar

The rule definitions below provide simple definitions of Head-Feature Principle, Subcat Principle
and Adjunct Principle. When Subcat Principle and Adjunct Principle are combined a cycle
w.iI] result. The following code provides a simulated grammatical analysis by combining these
rules. The code will simulate different unification success rates (0.0, 0.25, 0.5, 0.75 and 1.0).
This code is used to produce the graphs provided in Figure 6-6 to Figure 6-10 in Chapter 6.
These rule definitions and the code are put in the public domain. This code should be useful

to be used as a benchmark test of unification algorithms.

;33 —*— Mode: Lisp; Syntax: Common-lisp; Package: User; Base: 10 -%~
;33 Copyright (C) 1993 by Hideto Tomabechi

33

;53 head feature principle

(setq rulet (rule->graph

‘(((syn head) = (dtrs dtrl syn head)))
)

;33 subcat principle
(setq rule2 (rule->graph
‘(((syn subcat) = (dtrs dtr2 syn subcat rest))
((dtrs dtr!l syn head coh) = (dtrs dtr2 syn subcat first)))
)y :

133 adjunct principle

(setq rule3 (rule->graph
‘(((dtrs dtrl syn head coh) = (dtrs dtr2)))
)

133 combined rule.
(setq dgl (unify-dg (unify-dg rulel rule2) rule3))

(setq lexl (rule->graph
‘(((syn head maj) = N)
((syn head nform) = normal)
((syn head agr pers) = third)
((syn head agr num) = sing)
((syn head agr gen) = fem)
((syn head pred) = minus)
((syn head case) = -miniative))))

132

(setq lex2 (rule->graph
‘(((syn head maj) = N)

((syn head nform) = normal)
((syn head agr pers) = third)
((syn head agr num) = sing)
((syn head agr gen) = fem)
({syn head pred) = minus)
((syn head case) = objective))))

(setq dg2 (unify-dg lex1 dgl))
(setq dg3 (unify-dg lex2 dgl))

7535 simple data gathering below:
(defparameter *times* 10)
(proclaim ’(fixnum *10%))

(defun datal0 (&optional (times *times*))
"Usrate 1.0"
(declare (type fixnum times)
(special *times* *dgnodes* *dgarcsk))
(format t "7, “YUnification for “a times.' times)
(format t "~% USRate 1.0 ~%")
(setq *dgnodesx 0)
(setq *dgarcs* 0)
(time (dotimes (n times)
(unify-dg dgi dg2)))

(format t "~Y Number of Nodes Created: ~A" *dgnodes*)
(format t "% Number of Arcs Created: ~A" *dgarcsx))

(defun data0 (&optional (times *times*))
"Usrate 0.0"
(declare (type fixnum times)
(special *times* *dgnodes* *dgarcs*))
(format t ") Unification for “a times." times)
(format t "% USRate 0.0 ~Y%")
(setq *dgnodes* 0)
(setq *dgarcs* 0)
(time (dotimes (n times)
(unify-dg dg2 dg3)))

(format t "~% Number of Nodes Created: ~A" *dgnodes*)
(format t "~% Number of Arcs Created: ~A" xdgarcsx))

(defun datab (Zoptional (times *times*))
"Usrate 0.5"
(declare (type fixnum times)
(special *times* *dgnodes#* *dgarcs*))
(format t "7 Unification for "a times." times)
(format t "~Y% USRate 0.5 ~¥%")
(setq *dgnodes* 0)
(setq *dgarcs* 0)
(time (dotimes (n (truncate (/ times 2)))
(declare (type fixnum n))

133

(unify-dg dgl dg2)

(unify-dg dg2 dg3)))
(format t "“% Number of Nodes Created: ~A" *dgnodesx)
(format t ""% Number of Arcs Created: ~A" *dgarcsx))

(defun data25 (Zoptional (times *times#*))
"Usrate 0.25"
(declare (type fixnum times)
(special *times* *dgnodes* *dgarcs*))
(format t "~% Unification for “a times." times)
(format t "~% USRate 0.25 ~%")
(setq *dgnodes* 0)
(setq *dgarcs* 0)
(time (dotimes (n (truncate (/ times 4)))
(declare (type fixnum n))
(unify-dg dg2 dg3)
(unify-dg dg3 dg2)
(unify-dg dg2 dg3)
(unify~-dg dgl dg2)))
(format t "7/ Number of Nodes Created: ~A" *dgnodesx)
(format t "% Number of Arcs Created: ~A" *dgarcs*))

(defun data75 (&optional (times *timesx*))
"Usrate 0.75"
(declare (type fixnum times)
(special #times* *dgnodes* *dgarcs*))
(format t "% Unification for ~a times.'" times)
(format t "~% USRate 0.75 ~%")
(setq *dgnodesx* 0)
(setq *dgarcs* 0)
(time (dotimes (n (truncate (/ times 4)))
(declare (type fixnum n))
(unify-dg dgt dg2)
(unify-dg dgi dg3)
(unify~dg dg2 dgl)
(unify~dg dg2 dg3)))
(format t "7% Number of Nodes Created: ~A" *dgnodes*)
(format t "7/ Number of Arcs Created: ~A" xdgarcs*))

134

(unify~dg dgl dg2)

(unify-dg dg2 dg3)))
(format t "7/ Number of Nodes Created: ~A" *dgnodes)
(format t "“% Number of Arcs Created: “A" *dgarcsx))

(defun data25 (%optional (times *times*))
"Usrate 0,25"
‘(declare (type fixnum times)
(special *times* *dgnodes* xdgarcs*))
(format t "7% Unification for “a times." times)
(format t "~% USRate 0.25 ~%")
(setq *dgnodesx 0)
(setq *dgarcsx* 0)
(time (dotimes (n (truncate (/ times 4)))
(declare (type fixnum n))
(unify~dg dg2 dg3)
(unify-dg dg3 dg2)
(unify-dg dg2 dg3)
(unify~dg dgl dg2)))
(format t ""% Number of Nodes Created: A" *dgnodes)
(format t "~% Number of Arcs Created: ~A" *dgarcsx))

(defun data75 (&optional (times *times*))
"Usrate 0.75"
(declare (type fixnum times)
(special *times* *dgnodes* *dgarcsx))
(format t "% Unification for "a times." times)
(format t "~% USRate 0.75 ~%'")
(setq *dgnodes* 0)
(setq *dgarcs* 0)
(time (dotimes (n (truncate (/ times 4)))
(declare (type fixnum n))
(unify-dg dgt dg2)
(unify-dg dg1l dg3)
(unify-dg dg2 dgl)
(unify-dg dg2 dg3)))
(format t "~% Number of Nodes Created: ~A'" *dgnodes#)
(format t "% Number of Arcs Created: ~A" *dgarcs#))

-

134

Appendix IV: Sample Code

What follows is the sample implementation of the Q- algorithms using CommonLisp. The
code has been tested on Allegro, Lucid, and CMU CommonLisp. The code has been main-
tained for two years since the initial implementation conducted for International Workshop
on Parsing Technologies 1990, and then for ACLIL and COLING92. Currently the code is
running with stability. This code is available via email or in magnetic forms. Contact me at:

tomabech@es.cmu.edu, tomabech@is.tokushima-u.ac.jp, or tomabech@mtlab.sfc.keo.ac.jp.

733 —*= Mode: Lisp; Syntax: Common-lisp; Package: User; Base: 10 —#-

Y3
1 QUASI-DESTRUCTIVE UNIFICATION ALGORITHM N
D i (Q-D and QDS versions) R
i1; Copyright (C) 1990, 1993 by Hideto Tomabechi. All rights reserved. ;;;
[N N I I I I S A N I N I S
;3 File Created: 11-July~-90 by tomabech HA
;3 Last Edit Date: 17-Jan -93 by tomabech HH

N Global Variables

(defparameter *quasi-version* §.3 "version of the algorithm implementation")
(setq *features* (adjoin :TOMABECHI *features#))

(defparameter *atom-sharing* nil "if non-nil, perform structure~sharing for
atoms in the non-structure sharing mode'")

(defparameter *str-sharing* t "If non-nil, use structure sharing schenme.
Structure sharing is performed in the
following way. Atomic and Leaf nodes can
be shared. Complex nodes can be shared if
no nodes below was changed (forwarding or
comp~arc=~list). If a node is forwarded or

135

has comp-arc-list that information is passed

up using multiple-value-bind facility when

copy of nodes and arcs are passed up. When

a node is atomic or leaf and was not being
forwarded to them, they are regarded unchanged
and the original nodes are shared. When they
are destination of forwardeding then they are
considered changed. The original nodes are
shared by putting it in a copy arc and the
nodes above must be copied. (change information
passed up). If a node is a complex and is not

a destination of forwarding, then if a
comp-arc~list exists, then it is copied and
changed information is passed up the recursions;
if no comp-arc-list does not exist, then the
original nede is returned and unchanged info is
passed up. If the complex node is a target of
forwarding, the same happens but ‘change’ info
is always passed up. This method enables the
structure sharing of nodes that are unchanged.")

(defparameter *unification* ’quasi-unify '"name of unification algorithm')
(proclaim ’(type t *atom-sharing* *str-sharing*))

(defvar *debug-streaml* *standard-output#)

(defvar *dgnode-list* nil)

(defvar *unify-global-counter* 10) ;;; start from 10
(proclaim ’ (fixnum *unify-global-counter*))

(defvar *dgnodes* 0 "to count number of dgnodes created for experiments.")
(defvar #dgarcs* 0 'to count number of dgarcs created for experiments.")
(defvar *unify0* 0 '"to count number of unifyOs called.")

(defvar *unifyi* 0 "to count number of unifyls called.")

(proclaim ’ (fixnum *dgnodes* *dgarcs* *unifyOx sunifyls))

;33 Inline declaration
#~symbolics
(proclaim ' (inline make-dgnode create-dgnode complementarcs intersectarcs
copy-node-comp-not-forwarded copy-node-comp-forwarded
complement-arcs intersect-arcs add-arc-to-dgnode change~dgnode-type
get-dgnode create-complex-dgnode create-atomic~dgnede ;;; below is for
create-leaf-dgnode set-dgnode-to-arc-list add~feature ;;; Kogure.
get-dgnode-from-arc-list get-value-from-arc get-feature-from-arc
dgnode-type~of dgnode-typep copy-unifyl~dgnode copy-unifyi-node
print-dgnode print~arc find-real-result~dgnode '
pprint-fs-internal?2 pprint-fs-leaf pprint-fs-atomic
pprint-fs-complex
equal-dg
change-to-atomic-dgnode change-to~complex-dgnode
atomic-dgnode-p complex-dgnode-p leaf-dgnode-p

136

)

;33 Data Structure
N Definition of DGNODE

[

#-lucid
(defstruct (DGNODE (:print-function pprint-dg)) ;;; this for long mesg
753 (defstruct (DGNODE (:print-function kprint-dgnode)) ;;; this for short nesg

(type nil :type symbol)

(arc-list nil :type list) ;;; content of arc-list is an atomic value if type is :atomic
(comp-~arc~list nil :type list)

(forward nil :type dgnode)

(copy nil :type dgnode)

(generation 0 :type fixnum)

mark ;;; for Kevin’s grammar reader (unused).
)
#+lucid
(defstruct (DGNODE (:print-function pprint-dg)) ;;; this for long mesg
;55 (defstruct (DGNODE (:print-function kprint-dgnode)) ;;; this for short mesg
(type nil :type symbol)
(arc-list nil :type (or atom list)) ;;; content of arc-list is an atomic value if type is

(comp~arc-1list nil :type list)
(forward nil :type (or atom dgnode))
(copy nil :type (or atom dgnode))
(generation 0 :type fixnum)
N mark ;;; for Kevin’s grammar reader (unused).

)

;3 ARC-TYPES

;33 currently unused for experiments
(defconstant *normal* ’=)
(defconstant *nust-be-presentx ’=c)
(defconstant *multiple-valuedx ’>)

Y

;53 DGNODE CREATION

(eval~when (compile load eval)
(deftype dgarc () ’cons)
)

(defmacro create~arc (&key (label nil)
(type *normal*)
(value nil))
(declare (type symbol label)
(type symbol type)
(type .dgnode value) ‘
(special *dgarcs*))
‘(progn
(incf *dgarcs*)
(cons ,label ,value)))

137

ratomic

(defmacro arc-label (arc) ‘(car ,arc))
(defun arc-label~func (arc) (arc-label arc))
(defmacro arc-value (arc) ‘(cdr ,arc))
(defmacro arc-p (arc) ‘(consp ,arc))

(defun create-dgnode (%key (type :atomic)
(arc-list nil)
' i; (mark nil) ;;; CMU
)
- (declare (type symbol type)
(type list arc-list))
(let ((temp (make-dgnode
rarc-list arc-list
itype type
;3 smark mark ;;; CMU
)))
(declare (type dgnode temp))
; (incf xdgnodes*) ;;; count number of dgnodes created
temp))

(defmacro Ycreate-dgnode (&%optional (type :atomic))
"macro version of create-dgnode"
(declare (type symbol type)
(special *dgnodesx*))
‘(let ((temp (make-dgnode
1type ,type)))
; (push temp *dgnode~list*)
(declare (type dgnode temp))
(incf *dgnodes*) ;;; count number of dgnodes created
temp))

I

;533 MAGRO DEFINITIONS

(defmacro ATOMICNODE-p (dgnode)
(declare (type dgnode dgnode))
‘(eq (DGNODE-type ,dgnode) :atomic))

(defmacro LEAFNODE-p (dgnode)
(declare (type dgnode dgnode))
‘(eq (DGNODE-type ,dgnode) :leaf))

(defmacro COMPLEXNODE-p (dgnode)
(declare (type dgnode dgnode))
‘(eq (DGNODE-type ,dgnode) :complex))

(defmacro find~atomic (arc-1lst)
"receives an arclist and returns the first occurance of an
arc structure with the :atomic type."
‘(find :atomic ,arc-lst
ttest #’eq ’
:key #’ (lambda (arc) (arc-label arc))))

(defmacro find-leaf (arc-~lst)

138

‘(find :leaf ,arc-1st
ttest #'eq
:key #’(lambda (arc) (arc-label arc))))

(defmacro find-complex (arc-1st)
‘(find :complex ,arc-lst
itest #'eq
:key #’(lambda (arc) (arc~label arc))))

i3 generic version

;3 (defmacro find-arc-with-label (label arc~1st)

;35 "returns the first occurrance of the arc structure with
;33 the label in arc-lst"

i3y “(find ,label ,arc-lst

i3 itest #'eq

73 tkey #’(lambda (arc) (arc-label arc))))

;13 for cons aﬁc structure only
(defmacro find~arc-with-label (label arc-lst)
"This one for cons only."

(declare (type symbol label)

(type list arc-list))

‘(assoc ,label ,arc-lst :test #eq))

(defmacro simple-copy-arc (arc)
(declare (type dgarc arc))
‘(create-arc :label (arc-label ,arc)
:value (simple-copy-dgnode (arc-value ,arc))))

(defmacro identical-atomic-dgnodep (dgl dg2)
(declare (type dgnode dgl dg2))
‘(eq (DGNODE-arc-list ,dgl) (DGNODE-arc-list ,dg2)))

(defmacro dgnode-arc~labels (dgnode)
(declare (type dgnode dgnode))
‘(vhen (COMPLEXNODE-p ,dghode)
(mapcar #’(lambda (arc)
(arc-label arc))
(dgnode-arc-list ,dgnode))))

(defmacro return-real-arc (label dgnode)
"return an arc in the dg node that is with the arc-~label."
(declare (type symbol label)
(type dgnode dgnode))
‘(if (and (DGNODE-comp-arc-list ,dgnode)
(= *xunify-global-counter*
(DGNODE-generation ,dgnode)))
(or (find ,label (DGNODE-arc-list ,dgnode)
ttest #'eq
tkey #’ (lambda (a) (ARC-label a)))
(find +,1abel (DGNODE-comp~arc-list ,dgnode)
ttest #'eq
:key #’(lambda (a) (ARC-label a))))
(find ,label (DGNODE-arc-list ,dgnode)
ttest #’eq

139

key #’ (lambda (a) (ARC-label a)))))

(defmacro set-temporary-forward-dgnode (dgnodel dgnode?2)

"This is a temporary forwarding of dgnodel to dgnode2, i.e.,
just like in the case of copying, the value of the
generation field must meet the *unify-global-counterx"

(declare (type dgnode dgnodel dgnode2)

(special *unify-global-counter#))

‘(unless (or (eq ,dgnodel ,dgnode2)

(= (dgnode-generation ,dgnodel) 9)) ;;; added 10/1/91
(setf (dgnode~forward ,dgnodel) ,dgnode2)
(setf (dgnode-generation ,dgnodel) *unify-global-counter%)))

(defmacro set-permanent-forward-dgnode (dgnodel dgnode2)

"This is a permanent forwarding of dgnodel to dgnode2, i.e.,
standard Wroblewski type forwarding. The mark 9 indicates
that it is a permanent forwarding"

(declare (type dgnode dgnodel dgnode?2))

‘(unless (eq ,dgnodel ,dgnode?2)

(setf (dgnode-forward ,dgnodel) ,dgnode2)
(setf (dgnode-generation ,dgnodel) 9)))

(defmacro forward-dg (dgl dg2 %optional (type :temporary))

"We have two kinds of forwarding: temporary and permanent. If it
is temporary, it is only good during the same unify0. If it is
permanent it is hardwired just as in Wroblewski’s algorithm.”
(declare (type dgnode dgl dg2)

(type symbol type))

‘(case ,type
(:temporary (set-temporary-forward-dgnode ,dgl ,dg2))
(:permanent (set-permanent-forward-dgnode ,dgl ,dg2))))

i3y 11/16/91 macro-version
(defmacro dereference-dg (dg-input)
"This is an iterative version of dereferenced-~dg."
(declare (type dgnode dg-input))
‘(do ((result ,dg-input dg)
(dg ,dg-input
(if (and (DGNODE-forward dg)
(or (= (DGNODE-generation dg) *unify-global-counters)

(= (DGNODE-generation dg) 9))) ;;; 9 means permanent
(DGNODE-forward dg)
(setf (DGNODE-forward dg) nil)))) ;;; make it GCable and return nil

((null dg) result)
(declare (type dgnode result dg))))

N MAP-DOLIST is like DOLIST, except it returns a list of all results.

HE This macro is from Tommy’s (Masaru Tomita) CMT/CMU utilities.
(defmacro map-dolist (varlist body)

(let ((map-result (gensym)))
‘(let ((,map-result nil))
(dolist ,varlist (push ,body ,map-result))

140

(nreverse ,map-result))))

(defun complementarcs (dgl dg2)

"arcs that exist in dgl but not in dg2.
Content of comp-arc-list is respected if generation
is valid (matches the global counter."

(declare (type dgnode dgl dg2)

(special *unify-global-counterx))

(let ((arc-listl

(if (and (DGNODE-comp-arc-list dgl)
(= *unify-global~counter*
(DGNODE-generation dgl1)))
(append (DGNODE-comp-arc-list dgl)
(DGNODE-arc-list dgl))
(DGNODE~-arc-1ist dgl1)))
(arc-1list?2
(if (and (DGNODE-comp-arc-list dg2)
(= *unify-global-counter#
(DGNODE-generation dg2)))
(append (DGNODE-comp-arc~list dg2)
(DGNODE-arc-1list dg2))
(DGNODE~arc-1ist dg2))))
(declare (type list arc-listl arc-list2))
(set-difference arc-listi
arc-list?2
itest
#’(lambda (arcl arc?2)
(eq (arc-label arcti)
.(arc-label arc2))))))

(defun intersectarcs (dgl dg2)
"Tail recursive. This function returns only one value,
namely, shared arcs from dgl only."
(declare (type dgnode dgl dg2))
(labels ((tr-intersectarcs (arcsl arcs2 resultl)
(cond ((null arcsl) resultl)
((member (ARC-label (car arcsil))
arcs?2
ttest #’eq
tkey #’(lambda (bbb)
(ARC-label bbb)))
(tr-intersectarcs (cdr arcsi)
arcs?2
(cons (car arcsl) resulti)))
(t (tr-intersectarcs (cdr arcsl)
arcs?2
resulti1)))))
(declare (type list arcsi arcs2 resultl))
(let ((arc-listi
(if (and (DGNODE-comp=-arc-list dgi)
(= *unify-global~counterx
(DGNODE-generation dgi)))
(append (DGNODE-comp~arc-list dgl)
(DGNODE-arc-1list dg1))
(DGNODE~arc-1list dgi1)))

141

(arc-list?
(if (and (DGNODE-comp-arc-list dg2)
= *unify-global-counter*
(DGNODE-generation dg2)))
(append (DGNODE-comp-arc-list dg2)
(DGNODE-arc~1list dg2))
(DGNODE-arc-1list dg2))))
(declare (type list arc-listl arc-list2))
(tr-intersectarcs arc-listl arc-1list2 nil))))

;333 UNIFICATION FUNCTIONS

I ‘Unify Toplevel Function

; graph-unify, and unify-fs are for different parsers.

3

(defmacro graph-unify (dgl dg2 %optional result)
"This is the top-level unification function"
‘(unify-dg ,dgl ,dg2 ,result))

(defmacro unify~-fs (dgl dg2 %optional result)
"This is the top-level unification function'
‘(unify-dg ,dg! ,dg2 ,result))

(defun unify-dg (dgl dg2 &optional result)
"This is the top-level unification function"
(declare (type dgnode dgil dg2))

(setq result (catch UNIFY-FAIL (unify0 dgl dg2)))
(incf *unify-global-counter*)

result)

(defun unify0 (dgi dg2)
"If unifyl succeeds, make a copy of dgl. Content of comp-arc-list of
dgl will be added to the content of arc-list of the copy."
(declare (type dgnode dgl dg2))
(incf *unify0=)
(if (eq ’*T* (unifyl dgl dg2))
(copy-dg-with-comp~arcs dgl)))

;53 last mod 4/30/92 based on Marie Boyle's (nnsboOl@mailserv.zdv.uni-tuebingen.de)
;3 suggestion to avoid infinite loop in a successful cycle.
(defun unifyl (dgi-underef dg2-underef)
"intersectarcs only returns sharedl value"
(declare (type dgnode dgl-underef dg2-underef))
(incf #unifyix)
(let ((dgl (dereference-dg dgl-underef))
(dg2 (dereference-dg dg2-underef)))
(declare (type dgnode dgil dg2))
(if (DGNODE-copy dgl) ;;; this copy is not current, so get rid of it.
(setf (DGNODE-copy dgl) nil)) ;;; This is based on TIS report.

142

(if (DGNODE-copy dg2)
(setf (DGNODE-copy dg2) nil))

(cond ((eq dgl dg2) ;;; because of forwarding and loop, it is
VA T*) ;53 possible that dgl and dg2 are eq.
((LEAFNODE-p dg1)
(forward-dg dgl dg2 :temporary) ;;; forward dgl to dg2.
%)
((LEAFNODE-p dg2)
(forward-dg dg2 dgl :temporary) ;;; forward dg2 to dgl.
TRT*)

((and (ATOMICNODE-p dgi) (ATOMICNODE-p dg2))
(cond ((identical-atomic-dgnodep dgi dg2)
(forward-dg dg2 dgl :temporary)
TkTx)
(t (throw ’UNIFY-FAIL nil))))
((or (ATOMICNODE-p dg1) (ATOMICNODE-p dg2))
(throw 'UNIFY-FAIL nil))

(T (let ((shared! (intersectarcs dgl dg2))) ;;; 11/15/91 new moved down <-Marie
(declare (type list sharedi))
(cond ((null sharedl) ;;; no shared arc => success

(forward-dg dg2 dgl :temporary)
(setf (DGNODE-comp-arc-list dgl) (complementarcs dg2 dgl) ;;11/15/91
(DGNODE-generation dgl) #unify-global-counter*)
"*Tx)
(t (forward-dg dg2 dgl :temporary) ;;; moved up from after recursion
(dolist (arcl sharedi) ;3; due to Marie Boyle.
(declare (type dgarc arci))
(unifyl (ARC-value arcl)
(ARC~value (return-real-arc
(ARC-label arct)
dg2))))
;33 if all recursions succeeded then below:
(let ((new (complementarcs dg2 dgl1))) ;;; 11/15/91
(declare (type list new))
(if (DGNODE-comp-arc-list dgl) ;;; bug report by Neuhaus
(if (= *unify-global-counter% 133 9/3/91
(DGNODE-generation dgl))
(dolist (newarc new)
(declare (type dgarc newarc))
(push newarc (DGNODE-comp-arc-list dgl)))
(setf (DGNODE-comp-arc-list dgl) nil)) ;; 11/14/91
(setf (DGNODE-comp-arc-list dgl) new
(DGNODE~generation dgl)
unify-global-counter)))

"*T%)))))))

(defun copy-dg-with-comp-arcs (dgnode-underef)
(declare (type dgnode dgnode-underef)
(special *str-sharing#))
(if *str-sharing*
(copy-dg-with-comp-arcs-share dgnode-underef)
(copy-dg-with~comp-arcs-no-share dgnode-underef)))

(defmacro copy—afc-and-comp—arc—no—share (arc)
(declare (type dgarc arc))

143

‘(create-arc :label (arc-label ,arc)
:value (copy-dg-with-comp-arcs-no-share (arc-value ,arc))))

(defmacro copy-arc-and-comp-arc-share (arc)
"if destination nodes are changed than make a copy otherwise return
the arc itself.”
(declare (type dgarc arc))
‘(multiple-value-bind (destination changed)
(copy-dg-with-comp-arcs-share (arc-value ,arc))
(declare (type dgnode destination)
(type symbol changed))
(if changed
(values (create-arc :label (arc-label ,arc)
:value destination)
:changed) .
(values ,arc nil))))

(defmacro copy-arc-and-comp-arc (arc)
(declare (special *str-sharing)
(type dgarc arc))
‘(if #str-sharing#
(copy—arc—and-comp—arc—share ,arc)
(copy~arc-and-comp-arc-no-share ,arc)))

(defmacro simple-copy-dgnede (dgnode-underef)
(declare (special *str-sharing#)
(type dgnode dgnode-underef))
‘(if #str-sharing=*
(copy-dg-with-comp-arcs-share ,dgnode-underef)
(simple-copy-dg-no-share ,dgnode-underef)))

;33 original one.
(defun copy-dg-with-comp-arcs-no-share (dgnode-underef)
"Recursively go down the dgnode and make a copy of the dg.
Content of the comp-arc-list in the original dg should be
put in the arc-list of the copy. Ignore the comp-arc-list with
old generation stamp."
(declare (type dgnode dgnode-underef)
(special *atom-sharingk))
(let ((dgnode (dereference-dg dgnode-underef)))
(declare (type dgnode dgnode))

(cond ((and (DGNODE~copy dgnode) ;57 if a current copy exists
(= (DGNODE-generation (DGNODE-copy dgnode)) *unify-global-counter*))
(DGNODE-copy dgnode)) ;33 then return the copy

((ATOMICNODE~p dgnode)
(if *atom-sharing#
dgnode
(let ((newdgnode (Y%create-dgnode)))

(declare (type dgnode newdgnode))

(setf
(DGNODE-type newdgnode) :atomic
;s (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE~arc~list newdgnode) (DGNODE~arc-list dgnode) ;;; value
(DGNODE-generation newdgnode) *unify-global~counter*
(DGNODE-copy dgnede) newdgnode

144

)
newdgnode)))
((LEAFNODE-~p dgnode) ;;; Bottom of lattice, ie, Variable.
(let ((newdgnode (/create-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :leaf
H (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-generation newdgnode) *unify-global-counters
(DGNODE-copy dgnode) newdgnode
)
newdgnode))
(T ;;; complex-dgnode
(let ((newdgnode (%create-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
S (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-generation newdgnode) *unify-global-counters
(DGNODE-copy dgnode) newdgnode
) 333 ""this setf for copy is moved up from after recursion. Due to Peter, 9/3/91
(dolist (arc (DGNODE-arc-list dgnode)) ;;;do parallel
(declare (type dgarc arc))
(push (copy-arc-and-comp-arc-no-share arc)
(DGNODE-arc~list newdgnode)))
(if (and (DGNODE-comp-arc-list dgnode)
(= *unify-global-counter* (DGNODE-generation dgnode)))
(dolist (comp-arc (DGNODE-comp-arc-list dgnode)) ;;;do parallel
(declare (type dgarc comp-arc))
(push (copy-arc-and-comp-arc-no-share comp-~arc)
(DGNODE-arc-1list newdgnode))))
(setf (DGNODE-comp-arc-list dgnode) nil} ;33 make it GCable 10/1/91
newdgnode)))))

;15 mod 9/4/91 and 9/18/91 based upon Peter’s bug report.
;33 mod 4/30/92 based on Takahashi.
(defun copy-node-comp-not-forwarded (dgnode)
"When the node to be copied is not a result of forwarding then,
we will not need pass :changed markers upward."
(declare (type dgnode dgnode))
(cond ((ATOMICNODE-p dgnode)
(values dgnode nil)) ;;jthe second value nil indicates no change
((LEAFNODE-p dgnode)
(values dgnode nil))
(T ;;; complex-dgnode
(cond ((and (DGNODE-comp-arc-list dgnode)
(= #unify-global-counter*
(DGNODE-generation dgnode)))
(let ((newdgnode (Ycreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
(DGNODE-generation newdgnode) *unify-global-counter
;; (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-copy dgnode) newdgnode

145

)
(dolist (comp-arc (DGNODE-comp-arc-list dgnode))
(declare (type dgarc cemp-arc))
(push (copy-arc-and-comp-arc-share comp-arc)
. (DGNODE-arc~list newdgnode)))
(dolist (arc (DGNODE-arc-list dgnode))
(declare (type dgarc arc))
(push (copy-arc-and-comp-arc-ghare arc)
(DGNODE-arc-1ist newdgnode)))
(setf (DGNODE-comp-arc-list dgnode) nil) ;;; 10/1/91 for GC.
(values newdgnode :changed)))
(t (let ((state nil))
(declare (type symbol state))
(setf (DGNODE-copy dgnode) dgnode
(DGNODE-generation dgnode) #*unify-global-counter#)
i+5 777 This hack is needed to avoid infinite loop
;35 with a cyclic graph. By making a copy to be
;5; itself infinite loop can be avoided. 9/18/91 tomabech
(let ((arcs (map~dolist (arc (DGNODE-arc-list dgnode))
(multiple-value~bind (arc changed)
(copy-~arc-and-comp-arc-share arc)
(declare (type dgarc arc)
(type symbol changed))
(if changed
(setq state changed))
arc))))
(cond (state
(cond ((not (eq (DGNODE-copy dgnode) dgnode))
(setf
(DGNODE-arc-1list (DGNODE-copy dgnode)) arcs
(DGNODE-type (DGNODE-copy dgnode)) :complex
)
(values (DGNUDE-copy dgnode) :changed))
(t
(let ((newdgnode (Jcreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
(DGNDODE-generation newdgnode) *unify-global-counter*
R (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-arc~1list newdgnode) arcs
(DGNODE~copy dgnode) newdgnode
)
(values newdgnode :changed)))))
(t (setf (DGNODE-copy dgnode) nil)
;33 This corresponds to the above hack.
i+; Reset the copy field when actually no
;33 copy was made. 9/18/91 tomabech
(values dgnode nil))))))))))

i35 last mod 4/30/92 based on Takahashi (TIS) to be same as COLING9?2
(defun copy-node-comp-forwarded (dgnode)

"When the node to be copied is a result of forwarding then,

we will need to record changes.

We will not need to copy atomic and leaf nodes at all."

146

(declare (type dgnode dgnode))
(cond ((ATOMICNODE-p dgnode)
(values dgnode :changed)) ;;; considered change
((LEAFNODE-p dgnode)
(values dgnode :changed))
(T 5 compiex-dgnode
(cond ((and (DGNODE-comp-arc-list dgnode)
(= *unify-global-counter*
(DGNODE-generation dgnode)))
(let ((newdgnode (icreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
(DGNODE-generation newdgnode) *unify-global-counters
i; (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-copy dgnode) newdgnode
)
(dolist (comp-arc (DGNODE-comp-arc-list dgnode))
(declare (type dgarc comp-arc))
(push (copy-arc-and-comp-arc-share comp-arc)
(DGNODE-arc-list newdgnode)))
(dolist (arc (DGNODE-arc-list dgnode))
(declare (type dgarc arc))
(push (copy-arc-and-comp-arc~share arc)
(DGNODE-arc-list newdgnode)))
(setf (DGNODE-comp-arc-list dgnode) nil) ;;; 10/1/91 for GC.
(values newdgnode :changed)))
(t (let ((state nil))
(declare (type symbol state))
(setf (DGNODE-copy dgnode) dgnode
(DGNODE-generation dgnode) *unify-global-counters)
i3 777 This hack is needed to avoid infinite loop
;33 with a cyclic graph. By making a copy to be
;33 itself infinite loop can be avoided. 10/15/91 tomabech
(let ((arcs (map-dolist (arc (DGNODE-arc-list dgnode))
(multiple-value-bind (arc changed)
(copy-arc-and-comp-arc-share arc)
(declare (type dgarc arc)
(type symbol changed))
(if changed
(setq state changed))
arc))))
(cond (state
(cond ((not (eq (DGNODE-copy dgnode) dgnode))
(setf
(DGNODE-arc-list (DGNODE-copy dgnode)) arcs
(DGNODE-type (DGNODE-copy dgnede)) :complex
)
(values (DGNODE-copy dgnode) :changed))
(t
(let ((newdgnode (Ycreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
(DGNODE-generation newdgnode) *unify-global-counters

147

Y (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-arc-list newdgnode) arcs
(DGNODE-copy dgnode) newdgnode
)
(values newdgnode :changed)))))
(t (setf (DGNODE-copy dgnode) nil)
i3+ This corresponds to the above hack.
;i Reset the copy field when actually no
i copy was made. 10/15/91 tomabech
(values dgnode :changed))))))))))

i3 structure sharing supported. Last mod 10/2/91,4/30/92,5/6/92 tomabech

333 Whether the node is forwarded is checked by ‘eq’ between dgnode-underef and
;i3 dgnode. This should be same as actually checking the currency of the forward
i3 field and is faster. If this causes any bug, use the commented code above.
(defun copy-dg-with-comp-arcs-share (dgnode-underef)

"We don’t copy atomic nodes since their values are constant. Leaf nodes
need not be copied either since, if they unify with something they get
forwarded. Thus, if a dereferencing operation returns a leaf or the
original node is the leaf, it can simply remain that way.

Only make a copy only either when any of my subnodes created copy
or I have a valid comp-arc-list or temporary forwarding.
Recursively go down the dgnode and make a copy of the dg.

Content of the comp~arc-list in the original dg should be

put in the arc-list of the copy. Ignore the comp-arc-list with
old generation stamp.

If the node to be copied is a result of dereferencing then copy must
be made. Otherwise, copy is made only when any of the nodes below are
copied (changed)."
(declare (type dgnode dgnode-underef))
(let ((dgnode (dereference-dg dgnode-underef)))
(declare (type dgnode dgnode))
(cond ((and (DGNODE-copy dgnode) ;33 if a current copy exists
(= (DGNODE-generation (DGNODE-copy dgnode)) *unify-global-counter#))
(if (eq dgnode (DGNODE-copy dgnode))
(let ((newdgnode (/create-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :bottom
(DGNODE-generation newdgnode) #*unify-global-counterx
i; (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-copy dgnode) newdgnode
)
(values newdgnode :changed))
(values (DGNODE-copy dgnode) :changed)))
((eq dgnode dgnode-underef)
(copy-node~comp-not-forwarded dgnode))
(t (copy-node-comp-forwarded dgnode)))))

;3 original
(defun simple-copy-dg-no-share (dgnode-underef)
"Recursively go down the dgnode and make a copy of the dg.
This one is used by external functions requiring copying of dg.
the content of comp-arc-list is not respected."
(declare (type dgnode dgnode-underef))

148

(let ((dgnode (dereference-dg dgnode-underef)))
(declare (type dgnode dgnode))

(cond ((and (DGNODE-copy dgnode) 353 if a current copy exists
(= (DGNODE-generation (DGNODE-copy dgnode)) *unify-global-counters))
(DGNODE-copy dgnode)) ;33 then return the copy

((ATOMICNODE-p dgnode)
(let ((newdgnode (licreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE~type newdgnode) :atomic
i (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-arc-1list newdgnode) (DGNODE-arc-list dgnode)
(DGNODE-generation newdgnode) *unify-global-counter*
(DGNODE~copy dgnode) newdgnode
)
newdgnode))
((LEAFNODE-p dgnode)
(let ((newdgnode (Jicreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE~type newdgnode) :leaf
Y (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-generation newdgnode) *unify-global-counterx
(DGNODE-copy dgnode) newdgnode
)
newdgnode))
(T ;;; complex~dgnode
(let ({newdgnode (Jcreate-dgnode)))
(declare (type dgnode newdgnode))
(setf
(DGNODE-type newdgnode) :complex
B (DGNODE-name newdgnode) (DGNODE-name dgnode)
(DGNODE-generation newdgnode) *unify-global-counter#
(DGNODE-copy dgnode) newdgnode ;;; moved from after recursion 10/15/91
)
(dolist (arc (DGNODE-arc-list dgnode))
(declare (type dgarc arc))
(push (simple-copy-arc arc)
(DGNODE-arc-list newdgnode)))
newdgnode)))))

(defmacro set-forward-dgnode (dgnodel dgnode2)
(declare (type dgnode dgnodel dgnode2))
"This 1s an interface for Kogure/Kato earley-based parser"
‘(forward-dg ,dgnodel ,dgnode2 :permanent))

;3; END OF TOMABECHI’S UNIFICATION ALOGRITHM DEFINITION

33y

;33 Interface for Parser for Data gathering 10/17/91 tomabech

(defun tana (sent)
(declare (special #dgnodes* *dgarcs* *unify0 sunifyl#
NUMBER~OF-UNIFY~SUCCESS

NUMBER-OF-UNIFY-FAIL))

(setq *dgnodesx 0)

(setq *dgarcs* 0)

(setq *unify0x 0)

(setq *unifylx 0) B

(setq *NUMBER~OF~UNIFY-SUCCESS* 0)

(setq *NUMBER-OF-UNIFY-FAIL* 0)

(let ((start-time (get-internal-real-time))

(time=~spent 0.0))

(ana sent)
(setq time-spent (- (get-internal-real-time) start-time))
(format t "“% Number of Nodes Created: ~A" *dgnodesx)
(format t "“% Number of Arcs Created: “A" xdgarcsx)
(format t "~/ Number of UNIFYOs Called: "A" #unifyQs)
(format t "7} Number of UNIFYls Called: “A" *unifylx)
(format t "7% Unification Success Rate: “A" (usrate))
(display-time time-spent)
(terpri)
)

(defun display-time (time)
(let ((small 0.0)
(big 0.0))
(multiple-value-setq (big small)
(floor time internal-time-units-per-second))
(format t ""% Took "D.”D seconds of real time."
big small)))

;37 The code below is written by Dr. Kiyoshi Kogure of NTT (and ATR)
;37 We standardizedly use his node print functions and therefore, it is
;1 provided here under his permission.

;; DGNODE PRINT FUNCTIONS
;3 Pretty Printing graphs, originally defined by Kiyoshi Kogure
;3 some modifications by tomabech

i+ (defun kprint-dgnode (x stream plevel)

;31 "Kogure type dgnode print function. Useful for debugging"
D (declare (ignore plevel))

N (setq x (dereference-dg x))

35 (format stream ""s{"s}" (dgnode-type x)

N (cond ((complex-dgnode-p x)

HIS (map ’list #’arc-label (dgnode-arc-list x)))

iy (t (dgnode-arc-list x)))))

(defmacro pprint-fs-get~dgnode-name (dgnode)
‘(second (assoc ,dgnode *dgnode-assigns*)))

(defmacro pprint-fs-make-dgnode-name ()
‘(format nil "X72,VD" #\0 (incf *dgnode-counter*)))

(defmacro pprint-fs-force-get-dgnode-name (dgnode)
(let ((name (gensym)))

150

‘(let ((,name (pprint-fs-get-dgnode-name ,dgnode)))
(cond ({null ,name)
(push (list ,dgnode (setq ,name (pprint-fs-make-dgnode-name))) *dgnode-assignsx*)
,name)
(t
,name)))))

HEH Pretty-Printing a Feature Structure

(defun pprint-fs (fs &optional (stream *debug-streami*)
&key (init-indent 0) (indent-step 1) (return-p t))

(let ((xdgnode-assigns* nil)

(*dgnode~counter* 0))
(declare (special *dgnode-assigns* *dgnode-counter#))
(when return-p (format stream ""%"))

; (reorder-feature fs)
(pprint-fs-internal fs stream init-indent indent-step)))

(defun pprint-dg (fs stream plevel) ;; fs is a dg
"Same as pprint-fs. This is modified to be used as a print function
for defstruct. Takes three arguments: structure, stream, and level."
(declare (ignore plevel))
(if (not (DGNODE-p fs))
(error "7) ERROR in pprint-dg, “a not graph-structure." fs))
(let ((init-indent 0)
(indent~step 1)
(return-p t)
(#dgnode-assigns* nil)
(*dgnode-counter* 0))
(declare (special *dgnode-assigns* *dgnode-counter*))
(vhen return-p (format stream '"~%"))
; (reorder-feature fs)
(pprint-fs-internal fs stream init-indent indent-~step)))

(defun find-real-result-dgnode (dgnode)
"modified on 3/19/91 adding dereference operation"
(dereference-dg dgnode))

(defun pprint-fs-leaf (nill stream init-~indent nil2 name)
(declare (ignore nilil nil?2))
(format stream ""VT~A[]" init-indent name))

(defun pprint-fs-atomic (fs stream init-indent ignore name)
(declare (ignore ignore))
(format stream ""VT™A “A" init-indent name (DGNODE-arc-list fs)))

(defun pprint-fs-complex (fs stream init-indent indent-step name)
(let ((string (format nil ""VT~A[" indent-step name))
(arcs (dgnode-~arc-list fs)))
(format stream ""A" string)
(setq init-indent (+ init-indent (length string)))
(pprint-fs~arc (first arcs) stream init-indent indent-step)
(mapc #'(lanbda (arc)
(format stream "“%"VT" init-indent)

(pprint-fs-arc arc stream init-indent indent-step))
(rest arcs))))

(defun pprint-fs-internal2 (fs stream init-indent indent-step &aux name)
(setq name (pprint-fs-force-get-dgnode-name fs))
(case (dgnode-type-of fs)-
(:leaf (pprint-fs-leaf fs stream init-indent indent-step name))
(ratomic (pprint-fs-atomic fs stream init-indent indent-step name))
(tcomplex (pprint-fs-complex fs stream init-indent indent-step name))))

(defun pprint-fs-internal (fs stream init-indent indent-~step %aux name)
(1f (not (DGNODE-p fs))
(error "7% ERROR1 in pprint-fs-internal, ~a not graph-structure." fs))
(setf fs (find-real-result-dgnode fs))
(if (not (DGNODE-p fs))
(error "“% ERROR2 in pprint-fs-internal, ~a not graph-structure.” fs))
(if (not (null (setq name (pprint-fs-get-dgnode-name fs))))
(format stream "“VT"A" init-indent name)
(pprint-fs-internal2 fs stream init-indent indent-step)))

;35 mod. 3/23/91
(defun pprint-fs-arc (arc stream init-indent indent-step)
(if (not (ARC-p arc))
(error "~% ERROR in pprint-fs-arc, “a not arc-structure.” arc))
(let ((string (format nil "["A"VT" (arc-label arc) indent-step)))
(format stream ""A" string)
(pprint-fs-internal (arc-value arc) stream
(+ init-indent (length string)) indent-step)
(format stream "]")))

135 The end of Kogure’s node print functions.

I}

(terpri)

(print " Quasi-destructive Graph Unification Package -~ Version 5.3 ")
(print " Copyright (C) 1990, 1993 by Hideto Tomabechi. ")
(print " , All rights reserved. ")
(print " This code is put in public domain. Any modifications, suggestions,')
(print " and bug reports should be addressed to tomabech@cs.cmu.edu, or ")
(print " tomabech@is.tokushima-u.ac.jp, or tomabech@ntlab.sfc.keio.ac.jp ")
(print " "y
(terpri)

(print "Do (setq *inheritance* t) to enable HyperFrame inheritance support.')
(print " (setq *str-sharing* nil) to disable structure sharing scheme. ')
(print " (tana sentl) to parse first sentence. ")
135 eof

Appendix V: Sample Parser Output

Below is provided simply to show the idea of the kind of grammar used in the experiments.

This output is on a Sun/Sparc2 station with a Lucid CommonLisp.

> (tana sentil)
INPUT SENTENCE:MOSHIMOSHI
X01[[PRAG XO2[[HEARER X03[]]
[SPEAKER X04[1]]
[SEM XO05[[RECP X03]
[AGEN X04]
[RELN X06 MOSHIMOSHI-HELLO]]
[SUBCAT X07 END]
[HEAD XO08[[CFORM X09 SENF]
[CTYPE X10 NONC]
[POs x11 V1]
Number of Nodes Created: 79
Number of Arcs Created: 123
Number of UNIFYOs Called: 6
Number of UNIFY1ls Called: 27
Unification Success Rate: 0.5
Took 0.178746 seconds of real time.
NIL
> (tana sent9)
INPUT SENTENCE:SOREDEHAKOCHIRAKARASOCHIRANITOURODKUYOUSHIWOOOKURIITASHIMASU
X01[[PRAG XO02[[RESTR XO03[[REST XO04[[REST XO5[[REST X06[1]
[FIRST XO7[[FIRST XO8[[REST X09[]}
[FIRST X10[LFIRST X11[1]
[REST X12[111]
[REST X13[111]
[FIRST X14[[FIRST X15[{RELN X16 POLITE]
[AGEN X17[[LABEL X18 *SPEAKERx]]
[RECP X19[[LABEL X20 *HEARERx]}1]
[REST X21[[FIRST X22{[RELN X23 RESPECT]
[AGEN X17]
[RECP X19]1
[REST X24 END]11}
[FIRST X25[[FIRST X26[[RELN X27 POLITE]
' [AGEN X17]
[RECP X19]]
[REST X28 END]]]
[HEARER X19]
[SPEAKER X17]]
[(SEM X29[[INFMANN X30[[RESTR X31[[OBJE X32[1]
[RELN X33 SOREDEHA-11]}
[PARM X321]
[RECP X19]
[AGEN X17]
[OBJE X34[[PARM X35[]]
[RESTR X36[[RELN X37 TOUROKUYQUSHI-1]

153

[0BJE X3511]
[RELN X38 DKURU-1]]
[SLASH X39([1]
[SUBCAT X40 END]
[HEAD X41[[PDS X42 V]
[CTYPE X43 MASU]
[CFORM X44 SENF]
[MODL X45[[POLT X46 +1]]
Number of Nodes Created: 9161
Number of Arcs Created: 12666
Number of UNIFYOs Called: 488
Number of UNIFYils Called: 3373
Unification Success Rate: 0.3668032786885246
Took 4.966781 seconds of real time.
NIL
> (tana sent12)
INPUT SENTENCE:KOCHIRAKARASOCHIRANITOUROKUYOUSHIWOSHIKYUUNIOOKURIITASHIMASU
X01[[PRAG XO02[[RESTR XO03[[REST X04[[REST XOS[[REST X06[1]
[FIRST XO7[[FIRST X08[[REST X09[1]
[FIRST X10[[FIRST X11({]]
[REST x12[]111]
[REST X13[1111
[FIRST X14{[FIRST X15[[RELN X16 POLITE]
[AGEN X17[[LABEL X18 *SPEAKER*]]
[RECP X19[[LABEL X20 *HEARER*1]]
[REST X21[[FIRST X22[[RELN X23 RESPECT]
[AGEN X17]
[RECP X191]
[REST X24 END]11]
[FIRST X25[[FIRST X26[[RELN X27 POLITE]
[AGEN X17]
[RECP X19]]
{REST X28 END1]1]
[HEARER X19]
[SPEAKER X17]]
[SEM X29[[RECP X19]
[AGEN X17]
{OBJE X30[[RESTR X31[[0BJE X32[]]
[RELN X33 TOUROKUYOUSHI-11]
[PARM X32]1]
[RELN X34 OKURU-1]
[MANN X35[[PARM X36(1]
[RESTR "X37[[RELN X38 SHIKYUUNI-1]
[OBJE X361111]
[SLASH X39[]1
[SUBCAT X40 END]
[HEAD X41[[POS X42 V]
[CTYPE X43 MASU]
[CFORM X44 SENF]
[(MODL X45([[POLT X46 +11]
Nunmber of Nodes Created: 7690
Number of Arcs Created: 10485
Number of UNIFYOs Called: 436
Number of UNIFYls Called: 3126
Unification Success Rate: 0.3348623853211009

154

Took 3.162755 seconds of real time.
NIL
>

<

<

Appendix VI: An External Empirical Result

Table 7.1 was taken from Takahashi et «{[1992]. It is one of the first sets of data that came
out of the ATR’s large scale speech-to-speech translation project (ASURA). The project team
has adopted the QD and QDSS method and has been conducting some interesting experiments
using their large scale grammar. The QD and QDSS algorithms in the ASURA project uses
Kasper’s wmethod for disjunctive feature structures and Kogure’s method for negative feature
structure. As we can see from the data below, the QDSS method reduced the number of copies

from the QD method significantly. More data should be available from the project during 1993.

The effect of structure-sharing

number of copied nodes
s;gt. without Str-Shg Type of shared nodes v 32$2§;8£
' Atomic other than top all

l 22,431 15,394 12,673 3,074 196

2 7,283 4,940 4,558 1,238 71

3 29,211 18,719 16,563 3,848 195

4 154,240 104,769 93,934 24,187 661

5 86,028 62,651 55,395 13,803 410

b 270,616 186,055 159,516 40,828 1,398

1 190,903 129,561 115,692 29,647 1,080

§ 595,279 409,096 360,541 91,451 1,909

g 1,488,208 1,033,637 887,176 233,003 4,781

10 251,859 166,004 142,578 34,768 1,262
total 3,096,058 2,130,736 1,848,626 475,847
ratio 100% 68.8% 59.7% 15.4%

The ratio represents the ratio of QDSS scheme in comparison with non-SS QD scheme.

Table 7.1: The Effect of Structure Sharing.

156

