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1 Constraint Propagation in Memory

We propose the model of massively-parallel natu-
ral language processing based upon the propagation
f graph represented constraints. The central notion
of the proposed model is the propagation of con-
straints in the semantic memory network. We call the
model of massively-parallel memory extended with the
capacity to propagated graphs Graph-based Constraint
Propagation Network (GCPN). While retaining the se-
mantic (and pragmatic) expressivity of memory-based
schemes, the syntactic expressivity of the graph-based
constraint propagation scheme is significantly greater
than that of traditional memory-based schemes and
their extensions. In fact, a significant number of cur-
rent linguistic theories are based upon the formula-
tions of constraints based upon feature-structures and
unification operations on them (such as FUG [Kay,
1984], HPSG [Pollard and Sag, 1987] and LFG [Bres-
nan and Kaplan, 1982]), which are captured through
directed graph representations and graph-unification
operations' on them. The GCPN is configured hier-
archically in terms of conceptual inheritance. Graph
propagation occurs upward in the inheritance hierar-
*hy and when propagated constraint graphs of com-
plement nodes meet postulated conceptual constraint
nodes of head nodes, constraint graphs are unified one
another.

2 From Direct Memory Access to Graph

Propagation

The 5o called ‘direct memory access’ (or memory-

based) paradigm of natural language recognition seems
—_— =
'Recently some fast graph-unification algorithms have been

developed enhancing the appeal of graph unification-based con-
straint processing such as [Wroblewski, 1987), [Kogure, 1990},
and [Tomabechi, 1991].
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to have established itself as an important approach to
natural language processing and machine translation?.
Originated by Quillian ([Quillian. 1969]), this model
of natural language processing views natural language
understanding as the activity of identifying the in-
put utterance with existing memory structures. While
these memory structures have taken various forms de-
pending upon underlying theoretical approaches (such
as MOPs of [Riesbeck and Martin, 1985] and Cases in
[Martin, 1989]) and upon levels commitments to the
massively-parallel processing assumption (such as the
weak assumption in [Riesbeck and Martin, 1985] and
the strong assumption in [Waltz and Pollack, 1985]),
the underlying control structure has remained the same,
namely, spreading activation and marker passing. The
advantage of this control structure is that since spread-
ing activation takes place directly in the memory net-
work, direct-memory-based inferential processing can
be employed at any point of recognition. Also since the
underlying control structure is essentially massively-
parallel, the models have taken advantage of massively-
parallel hardware that has become recently available®,
The weakness in the existing massively-parallel mod-
els of natural language processing to handle syntax is
due to the fact that syntactic constraints are often
highly structural and are assigned dynamically based
upon particular structural patterns of the constituent
buildup at the time of utterance. For example, a syn-
tactic case of a particular noun phrase is dynamically
determined at the time of the utterance based upon
the particular syntactic configuration and is essentially
impossible to capture a prioriin the semantic network
(otherwise we will have to specify infinitely many sen-
tential patterns as well as many redundant subcat-
egories of concepts based upon case variety simply
to capture the case agreement phenomenon). Simi-
larly a recognition of Sue said that Mary ran under
the memory-based paradigm would require instantia-

2Such as my own DMTRANS ({Tomabechi, 1987)) which
was the first MT attempt under the Direct Memory Access
paradigm.

3Such as [Kitano and Higuchi, 1991a).
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tion of two sequences of concepts in memory [*person
*mtrans-word that *action] and [*person *run]
(i.e., a typical sentential recognition methodology cur-
rently employed under this paradigm using patterns
of concepts). The first sequence is probably attached
to a root node such as *mtrans-event and the sec-
ond sequence is attached to *run-action which is a
subclass of *action. The last element of the first se-
quence *action will be activated by the recognition
of any subclass of *action including *run-action,
*sleep-action, etc.. However, there is no way to en-
sure that if the *mtrans-word is said, the set of enti-
ties that caused the activation of *action contain (be
headed by) a finite verb (unless we create a possibly
infinite number of concepts for different combinations
of syntactic features such as *finite-form-running-
action-taking-nominative-subject). Thus, it is es-
sentially impossible to capture the grammaticality of
John said Mary runs and the ungrammaticality of
John said Mary run (or John said Mary to run) within
the constraints capturable inside the semantic mem-
ory network. By the same token handling the so called
obligatory control phenomenon (such as persuade) has
been a problem in the past massively-parallel models.
In our proposed model, none of these phenonema poses
any problem due to the expressivity of graph-based
constraint formulations. Structured constraints such
as binding and control can be handled through graph-
based constraint application (i.e., graph-unification)
no different from the way these constraints are han-
dled in the unification-based grammars.

3 Conclusion

The paradigm of natural language recognition based
upon the direct recognition in a semantic memory has
been appealing from different view points. These in-
cluded the appeal from the cognitive view-points as
well as the phenomenological ones (especially the as-
sumed massive-parallelism). On the other hand, with
few exceptions, syntactic constraints have been either
ignored or handled in an ad hoc manner (such as re-
quiring a triggering of arbitrary prestored daemons
that handle particular constraints). In our model,
syntactic phenomena problematic to existing memory-
based models such as case, agreement, control, binding,
and long-distance dependency can be handled in a gen-
eralized manner most straightforwardly as formulated
by the modern linguistic theories based upon feature
structures and unification. Because no separate (and
essentially serial) control structure is required for han-
dling syntax, uniformity of processing is maintained
coherent to the underlying massively-parallel process-

ing hypothesis of the memory-based architectures so
that advantage of such processing as demonstrated by
[Waltz, 1990] will not be sacrificed. With the expres-
sivity of our model in capturing the constraints as pos-
tulated in the modern linguistic theories while retain-
ing the advantages of memory-based recognition, our
model seems viable as a base for the future generation
natural language processing efforts?.
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