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ABSTRACT

This paper describes the Phoneme-Based Direct Mem-
ory Access Translation System (DMTRANS) which is
a speech 1o speech translation system developed at the
Center for Machine Translation at CMU. DMTRANS
utilizes a phonological and episodic/thematic mem-

vy network, and performs spreading activation guided
.aarker passing which is massively parallel in nature.
DMTRANS handles the problem of multiple hypoth-
csizations of input phonctic streams through network
memory-based encoding of knowledge for language-
specific phonology and morphophonetics, as well as
episodic/thematic memory that supplies contexual dis-
ambiguations of the input. The architecture is ideal for
massively parallel computer systems that are currently
researched by hardware developers.

1 Introduction

Recently a few efforts have been made in the area of process-
ing speech input to a natural language understanding system.
These include the work of Hayes, et al[1986], Tomita[1986],
Poe<in&Rullent[1987], Saito&Tomita,{1988], Tomabechi&-
To  4[1988a], and Hauptmann, er al[1988]. Among them,
Tomabechi&Tomita and Hauptmann, ef al use contexual in-
formation for disambiguation of speech inputs and therefore,
since extra-sentential information is important in the speech
input system, #DMTRANS shares this feature of the two sys-
tems. The uniqueness of #DMTRANS, however, is that:

o it uses a parallel spreading activation network from the
phonetical level,

¢ morphophonetic and phonological knowledge is dy-
namically utilized during memory activity,

e the morphophonemic, episodic/thematic and pragmatic
levels of processing are fully integrated.

PDMTRANS uses parallel processing, and our exper-
iments with the prototype #DMTRANS at Center for Ma-
chine Translation at the Carnegie Mellon University show
that #DMTRANS is a promising framework for translating
speech input cross-linguistically in new generation parallel
computers.

2 Some Background and History:

2.1 Recognize-and-Record

SDMTRANS is a “Phoneme-Based Direct Memory Access
Translation™ architecture which represents what we call the
“recognize-and-record” paradigm of natural language pro-
cessing usually grouped as DMA (Direct Memory Access)
models. In this model, natural language understanding is
viewed as a memory activity which identifies input with
what is already known in memory as episodic (experiential)
and thematic knowledge. This is contrasted with the tradi-
tional model of parsing, which we call the “build-and-store”
paradigm, in which a syntactic parser (with the help of se-
mantics) builds up a tree-style representation of an input
sentence, and processing is done sentence by sentence with
litde (if any) interaction between parses. In other words,
the DMA paradigm models the human mind in the sense
that past linguistic and non-linguistic experiences are being
remembered during the course of understanding the input,
and each sentence recognized records a context that influ-
ences the processing of successive inputs. On the other hand,
in maditional (non-DMA) systems, each input sentence is
parsed into syntactic trees, and semantics are used primarily
as a tool for guaranteeing the right configuration of syntactic
trees; normally, no long-term memory (such as experiential
memory) is involved during the parse. Also, in these Sys-
tems, the result of a parse is lost after the processing of each
sentence.

2.2 A Brief History

The Direct Memory Access method of parsing originated
in Quillian’s[1968] notion of semantic memory, used in his
TLC (Quillian[1969]), which led to further research in se-
mantic network-based processing!. TLC used breadth-first
spreading marker-passing as an intersection search of two
Iexically pointed nodes in a semantic memory, leaving in-
terpretation of text as an intersection of the paths. Thus,
interpretation of input text was directly performed on se-
mantic memory. DMA was not explored as a paradigm for
parsing (except as a scheme for disambiguation) until mid -
1980’s when DMAPQ (Riesbeck&Martin[1985]) followed by

'This includes the work of Fahlman[1979], Hirst&Chamniak[1982], - -
Small&Reiger[1982], Chamiak[1983], Haun&Reimer[1983], Hirst[1984], - ‘-‘f
Chamiak[1986], Charniak&Santos[1987], Norvig[{1987], and recent con- -
ncctionist and distributed models such ag Granger&Eiseli[1984], Waliz&- 4

Pollack(1984], Berg{1987), Bookman[1987].




Tomabechi[ 1987a,b] developed the DMA paradigm into the-
ories of parsing and translation respectively. These projects
vere part of the Yale Al Project and were aimed at building
1 DMA natural language system to be integrated with case-
>ased reasoning systems developed under the XP {eXplana-
ion Patterns) theory of Schank[1986]. Since DMA parsers
vork directly on memory through spreading activation, in-
cgration of natural language understanding with the expe-
iential memory of the case-based system became possible.
fhese DMA systems used a guided marker-passing algo-
ithm to avoid the problem of an explosion of scarch paths,
rom which a dumb? (not guided) marker passing mecha-
ism inherently suffers. P-markers (Prediction markers) and
\-markers (Activation markers) are markers passed around
n memory, adopting the notion of concept sequence which
uides marker passing along the known ordering of concepts.
secently, the paradigm was adopted as a scheme for a natu-
al language interface for development of knowledge-based
ystems (Tomabechi&Tomita[1988b]).

>

" Problems in Speech Input
-1 Phonetics, Phonology and Morphology

he difficulty of parsing speech input is that unlike written
’Xt input, a parser receives multiple hypotheses as input for
particular voice input. This is partly due to current limita-
ons on speech recognition systems, which are incapable of
stermining specific phonemes for each input and generally
roduce several possible segmentations of the hypothesized
10netic stream. It is not rare that a speech parser outputs 30
+ 50 well-formed, semantically acceptable parse results for
wch independent sentence of a speech recognition device
put.

For example, when testing the CMU-CMT speech
user (a phoneme-based Generalized-LR parser ($GLR,
1to&Tomita[1988])), the Japanese input “atamagaitai” (“I
we a headache™) was spoken into a speech recognition
stem® (under ordinary office environment) and accepted
» the integrated* parser with 57 ambiguous interpretations.
wch.  1e ambiguous interpretations are semantically legit-
\ate, ...eeting the local restrictions set forth by case-frame
stantiation restrictions. Below are some of the highly
ored interpretations:

.amagaitai (I have a headache.)
.zokuwaitail ((The) families want to stay.)
.zokuheitai ((My) family is soldier(s).)

.zokudeitai (I want to stay as (a) family.)
abanaisou (Love (make love) (every)
«rning and night.)

akaraikou (Go (come) (from) tomorrow

‘rning.)

2We call it ‘dumb’ when markers are passed everywhere (through all
<s) from a node. In a ‘guided’ scheme, markers are passed through
cific links only.

3Matsushita Research Institute’s speech recognition hardware. The
cch recognition system and the speech input enhanced LR parser arc
cribed in detail in Saito&Tomita{1988].

4By ‘integrated’, we mean concurrent processing of syntax and seman-
during parsing as opposcd to some parsing methods where syntax and
1antics are scparately processed.
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kazokuwaikou ((The) families go.)
asamadeikou (Go before morning, Come until
morning.)

okosanaika (Shall we wake (one) up?)
okosumaika (Shall we not wake (one) up?)
kazokuheikou ((The) family is disappointed.)
kazokudeikou (Go with the family.)
gohunaisou (Love (make love) for five
minutes.)

ugokumaika (Shall I not move?)

atukunaika (Is it not hot?)

dokoeikou (Where shall we go?)
dokodeikou (Where shall we come?)
koupumadeikou (go to (the) cup.)

These are just some of the 57 disambiguations that were
produced as acceptable readings by the speech understand-
ing system given the input “atamagaitai”. One problem that
is typified here by the $GLR speech parser, and commonly
shared by most existing speech understanding systems, is
that these systems do not sufficiently utilize morphopho-
netic and phonological knowledge during recognition and
understanding.  We will be discussing such knowledge in
Section 4, but to be precise, it is the kind of knowledge that,
for example, dictates what type of phonetic and phonologi-
cal variations are possible for each type of phonetic features
specific to Japanese. Humans apparently utilize such knowl-
edge in processing a sequence of phones, and we would like
to model such processing, since speech input is not a se-
quence of independently-determined phones but a connected
string of successive phones.

3.2 Need for Contextual Knowledge

As we have seen in the preceding subsection, even with the
semantic restrictions set forth by a syntax/semantics parser,
we suffer from the problem of ambiguities that do not arise
when the complete text is considered (i.e., 57 interpreta-
tions of “atamagaitai” in the preceding subsection were all
acceptable syntactically and semantically only when not con-
sidering the context). This problem increases when the vo-
cabulary of the speech understanding system enlarges and
the varicty of sentences that are accepted by the system ex-
pands. Although possible morphophonemic analyses of the
speech input may be narrowed with the use of phonetic and
phonological knowledge during speech understanding, we
will still have large number of ambiguities for a specific
phonetic stream.

In other words, local semantic restriction checks and
phonetic/phonological narrowings are not sufficient for dis-
ambiguating continuous speech input, since an interpreta-
tion can be totally legitimate phonologically, syntactically,
and semantically, but can mean something drastically dif-
ferent from what has been input into the speech recognition
system (as well as being contextually inappropriate). The
speech understanding system needs extra-sentential knowl-
edge to choose an appropriate hypothesis for grouping pho-
netic segments and for selecting the appropriate word-sense
of lexical entries. That is to say that the need for contextual
knowledge in speech understanding systems is even more
urgent than in text input understanding systems; in a speech
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understanding system, the input can be interpreted in a way
that is not possible in text input systems, and the input can
still be acceptable to the local semantic restriction checks
that integrated parsers perform within a sentence (such as
slot-filler restriction checks of case-frame parsers).

4 Phonological Knowledge in
PDMTRANS

Phonological knowledge is represented in ®DMTRANS as
weig’hted links connecting phonetic and phonemic nodes and
functions stored in phonetic nodes capturing the physical
and acoustic properties of sounds in a language (distinctive
features) as well as environments that dynamically affect
phonetic alterations. Phonological knowledge is used for
providing the information to identify physical properties of
articulated sounds instead of mental representations of each
segments of words. Speakers have mental representation
of sound systems, which are different from actual physical
properties. Speakers of English feel /p/ in ‘pin’ and ‘spin’
are:. atical (and spelled the same in text inputs), but phys-
ically they are different sounds. /p/ in ‘pin’ is aspirated,
represented in [ph], whereas /p/ in ‘spin’ is not aspirated
represented in [p]. Both aspirated and unaspirated sounds

do not differentiate the meaning in English, and they are -

predictable from a given environment. These units of pho-
netic segments are called phones. Thus, there are two levels
of sound representation: a phonological level and a phonetic
level. ) ) )

Phonological rules convert phonological representations
into phonetic ones. They can change, delete, or add seg-
ments. They can also coalesce or permutate segments. In
Japanese, high vowels become voiceless between voiceless
consonants or after a voiceless consonant in the word final
position.

v -> [~voicel] / C I_ o] T
[+high] / [~voice] | [-voice] |
| |

1_ # _

“onological rules® apply to classes of phonetically re-
lateu segments. In order to capture the common features that
certain phonological segments have, phonologists use dis-
tinctive features to represent them (Jakobson& Halle[1956];
Chomsky&Halle[1968]). For example, Japanese vowels are
represented using the SPE system (Chomsky&Halle) in the
following matrix.

i e a o u
high + - - - +
back - - 4+ o+ o+
low = - + - -

The five vowels can be distinguished by using three kinds of
features, and the matrix shows the phonemic relations. We
can see the phonemic distance by counting the differences
which are representable as weights:

SPhonological rules that dynamically affect processing duc to phonologi-
cal environments are captured via memory network representation (utilizing
daemons in our system in ‘FrameKit’ (Nyberg{1988)) system) stored locally
lo each phones which was transformed from declarative description of rules
originally supplied as phonological knowledge.

i e a 0 u
i 0 1 3 2 1
e 0 2 1 2
a 0 1 2
o) 0 1
u 0

We can assume that lower distance numbers have higher con-
fusion probabilities (i.e., higher weights). Therefore, when
the input phone is [a], we can test from the segment which
has a lower distance number, such as [a], then o], and so
on. With this matrix we can limit the test to close segments
instead of testing all the segments® and group close sounds
in the network with certain thresholds. For consonants, dis-
tinctive feature matrix is more complex than our example of
vowels and is provided in the Appendix 2 which is used as
a base for encoding weights of the links.

The utilization of distinctive feature matrices described
above; however, is a static knowledge that are encoded
inidally to the network (before parsing). We also need a
scheme to dynamically assess the confusion of phones de-
pending upon the phonetic environments that appear in the
input speech. In Japanese, some speakers produce a glot-
tal stop in a word initially before a vowel. In some speech
recognition systems, the glottal stop may be interpreted as
some voiceless stops, most likely /k/ because it is closer than
others. The example of voiceless high vowel (specifically
[u] and [i] in Japanese) between two voiceless consonants
(or word final after voiceless consonant) is one case that we
have seen in the phonological rule above. The method of
capturing these types of phonological rules in our system
is that we initially provide phonological environments and
rules in a declarative form and the system precompiles the
knowledge into functions stored in the phonetic nodes lo-
cally that are assessed every time the node is activated’ so
that the phonemic activations are dynamically modified de-
pending upon the phonetic environments on the speech input
independent of the confusion matrices described above. This
kind of phonological knowledge is thus encoded in the net-
work for the dynamic phonetic activation changes, as well
as the static confusion matrices that are pre-supplied and

encoded as weighted links of the network along with the -

phonemic distances.

SSince we use Matsusita Research Institute’s Speech Recognition hard-
ware, we adopt the phonemic system that the hardware recognizes. How-
ever, we have to note that some segments are not phonemes but are allo-
phonic variants.

TThe functions are stored as daemons in the nodes that are implemented
via ‘FrameKit’ representations. For example, with the voiceless vowel be-
tween voiceless consonants example, the rule is originally supplied declar-
atively and then the declarative rule is precompiled as functions to be
evaluated and stored locally in the phonetic node representing the voiceless
vowel. At parsing time, when the voiceless vowel is hypothesized by the
speech recognition hardware, i.c., receives the activation (A-Marker), then
the functions stored in the node as the daemons are triggered and checks
the environment (a lazy evaluation is used to attain the evaluation for both
preceding and following nodes) and if the environment matches the pre-
compiled knowledge for the voiceless vowel between voiceless consonants,
then the voiced vowel phonetic nodes (i.e., [i] and {u] for Japanese) get
activated and send activation to their phonemic nodes instead of activating
the phonemic node for voiceless vowel.

St G




5 Contexual Knowledge in
PDMTRANS

SDMTRANS uses an episodic/thematic memory network,
similar to the ones described in Schank[1982] and Schank-
{1986}, which is capable of dynamic modifications, inference
and learning. Context in such a conceptual memory network
can be represented as a grouping of concepts that are asso-
ciated in a certain manner, i.e. an activation of one concept
in memory triggers (or can potentially trigger) some other
concepts in the memory network. To put it in another way,
there is a relationship between concepts in which activation
(recognition) of one concept reminds some other concept
that it is related in a certain way. As we will see in de-
tail in the following section, PDMTRANS uses the lexically-
guided spreading activation mechanism for parsing. Context
in this scheme is represented as what has been activated so
far as 1) accepted concepts representing the previous sen-
tences and 2) the concepts in the currently active concept
sequences. These activations represent the recognition of
whi being said so far and also represents what is likely
to be heard under the current context. Readers may find our
scheme of spreading activations similar to those researched
by connectionists. However, we have not adopted connec-
tionist associative architecture® and back-propagation in our
thematic conceptual clusters. Our spreading activations are
guided and we do not spread everywhere.

6 Understanding in ?2DMTRANS

6.1 Phone Level Activity

PDMTRANS is the first DMA parser that works at the
phonetic level. We will discuss the scheme of phonetic
and phonological recognition in this subsection. First,
PDMTRANS has as its nodes in the memory network nodes
for phones and phonemes in each language. A phoneme
may be realized as different phones in different phonetic
environments. Several different phones may represent the
sair  “honeme, for example phone [e] after dental and alve-
ola. .ops and affricates may represent phoneme /a/, in ad-
dition to phone [a] representing the phoneme /a/ in ordi-
nary environments. In our memory network, each phone is
connected to phonemes they represent via abstraction links.
Also, each phoneme is connected by weighted phonological
relation links to other phonemes. The weights of the links
are determined by the strength of phonemic closeness based
upon phonological distinctive feature thresholds as described
in Section 4.

Above the phonemic nodes in the abstraction hierarchy
are the lexical nodes, representing words. We have each lex-
ical nodes in the memory network containing the phonemic
sequence realizing the lexical entry in the given language.
For example, in Japanese the lexical node “atama” (head)

8The connectionist associative model still lacks abilities to express com-
plex relations between concepts and to perform variable binding (marker
passing algorithm with structured markers can handle this) which are es-
sential to handle linguistic phenomena such as metonymy as explained in
Touretzky([1988].
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has the list <a t a m a> attached to it. So the structure
linking phonetic node to lexical node is like this:

"atama" < lexical node
<a t a m a> < phonemic seqguence

/ attached to "atama"
/
| ~5~-~/u/ < phonological rel link with
|/ distinctive feature weight
I/
/a/ < phoneme node
|
[a] < phone node

We have two types of markers (structured objects)
passed around in memory. One is called P-Marker (for
Prediction-Marker) and the other is called A-Marker (for
Activation-Marker). P-Markers are passed along the phone-
mic sequences and A-Markers are passed above in the ab-
straction hierarchy (i.e., from phone to phoneme). Both
markers contain information about which node originated the
marker passing. P-Markers also contain information about
which was the immediately preceding node in the sequence.
The algorithm for phonetic recognition is as follows. At
the beginning of recognition, all the first elements of the
phonemic sequences (such as /a/) are P-Marked by lexical
nodes.

1. when the first input phone comes in (with this example,
[a]) we put an A-Marker on (A-Mark) the phone node
representing the phone (the node {a)).

2. when a node receives an A-Marker (i.e., if A-Marked)
it sends an activation to (A-Marks) the node in its ab-
straction (i.e., phoneme /a/).

3. when an A-Marker and P-Marker meet, send a P-
Marker to the next element of the sequence (i.e., since
/a/ was P-Marked by the lexical node "atama", it sends
a P-Marker in turn to /t/).

4. when the whole sequence is activated, then activate the
root of the sequence (i.e., by repeating from 1. for [t],
[a], Im], [a], the phonemic sequence <a t a m a> gets ac-
cepted and then we activate the lexical node “atama™).

This is the basic cycle that is used in #PDMTRANS. In the
next subsection we discuss how the same algorithm is used
for further processing at the seatential level, activating the
episodic/thematic memory network. One thing we omitted
in the above algorithm (for the sake of simplicity) is the way
the phonological relation link is utilized in the activation of
phones. Let us examine how this works:

When a certain phone (such as [t]) is activated, it
not only activates its abstraction (such as the phoneme /t/)
but also activates other phonemes that are related by the
weighted links exceeding the givén threshold. The weight
of the phonological relation link is based upon distinctive
feature study of each phone in the given language. For ex-
ample, in Japanese the phoneme /t/ has the distinctive fea-
tures ‘alveolar’ and ‘stop’ shared with the phoneme /d/, and
link weight of 8 between them. So, if the threshold is given
to be 5, when phone [t] is activated, both phonemes /t/ and
/d/ are activated. This way, the phonological knowledge is
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encoded in the memory network as weighted links and is uti-
lized during the spreading activation. Also, if the activated
node contains the phonological rule application functions
(i.e., stored as daemons, see footnote 7), and if the eval-
uation applies the rule and perform the dynamic alteration
of the currently active phonetic node, then the phonemic
nodes of the altered phone is activated capturing the phonetic
changes in different environments which are not expressed
in the static weighted links. Of course, because we have
many lexical entries that share similarity in attached phone-
mic sequences, and also because of activation of allophones
(i.c., as we have seen both [a], and [e] may be under /a/),
we have quite a significant number of simultaneously active
phonemic sequences for a given stream of phones. This is
where the strength of the parallel nature of our spreading
activation mechanism is.demonstrated. Since our memory
network is a massively parallel network, the spreading ac-
tivations for each concurrently active phonemic sequences
will be parallelly performed.

6.2 Word Level and Sentential Level Activity

A...r a lexical node is activated through the acceptance of
a whole phonemic sequence attached to a lexical node, we
have similar spreading activations at the word level. We will
not include the details of this processing in this paper be-
cause it is described in detail elsewhere (Tomabechi[1987b]
and Tomabechi&Tomita[1988b]). A brief example would be
the processing of the sentence “atamagaitai”, which we saw
before as a problematic input to other speech understanding
systems. We use basically the same algorithm as we saw
in the processing at phonetic level, except that each unit in
the sequence is not a phoneme but a lexical node or a con-
cept node and we call the sequece of such nodes concept
sequences. An example of a concept sequence is <*BODY-
LOCATION *PP[GA] *PAIN-SPEC> representing the sequence
of concepts appear in “atamagaitai”. The concept sequence
can be regarded as a kind of subcategorization list (as in
HPSG, Pollard&Sag[1987]) or as a generalized version of a
phrasal lexicon (Becker[1975]) except that the sequence can
br * higher levels in abstraction hierarchy as well as being
ep--udic and thematic such as in MOPS and EXPLANATION
PATTERNS (Schank[1982&1986]) encoding the knowledge
for contexual processing.

We have nodes such as *HAVE-A-PAIN (representing
the concept having a pain) and concept sequence such as
<*BODY-LOCATION *PP[GA] *PAIN-SPEC> attached to the
node (we call it root node if a concept sequence is attached
to it). The elements of the sequence are the nodes in the
memory network representing certain concepts®.

Below is our algorithm for word and sentential level
activity:

1. inigally predict (put P-Marker on) all the first elemerits
of concept sequences in memory.

2. when a whole phonemic sequence is accepted (i.e., a

9*PP[GA] is a syntactic catcgory representing the post-position “ga™.
This way, we can integrate syntactic knowledge as in subcategorization
lists in syntactic theorics as well. “** preceding a concept name indicates
that it is represented using our frame language ‘FrameKir’.

word is recognized), we activate (put an A-Marker on).
the lexical node, i.e., activate the node with the ac-
cepted phonemic sequence attached to it, and activate
the corresponding conceptual node.

3. when a node receives an A-Marker it sends an activa-
tion to (A-Marks) the node in its abstraction.

4. when an A-Marker and P-Marker meet, send a P.
Marker to the next element of the concept sequence,

5. when the whole concept sequence is activated, then
activate the root of the sequence and perform concept
refinement.

Concept refinement is an activity to locate the most specific
node in memory, below the activated root node, which rep-
resents the specific instance of the input text. Such a node
must have links to all the specializations (or instances) of the
nodes that appeared in the concept sequence with relations
that are equivalent to (or subclasses of) the relation links
from the root node to the packaged nodes in the accepted
concept sequence. The search for such a node undemeath
the root node is called concept refinement. This activity,
which locates the concept that is identified with the specific
input speech, is central to the understanding in the DMA
parsing.

Processing of the example sentence “atamagaitai” is as
follows: when the lexical node “atama” is activated after
the acceptance of the phonemic sequence <a t a m a>, then
we activate the corresponding conceptual node “*HEAD” and
spread the activation upward in the abstraction hierarchy.
One of the abstractions is the concept “*BODY-LOCATION”.
At the beginning of understanding, we have all first ele-
ments of the concept sequences P-Marked (ust as we did
so with first elements of phonemic sequences). So “*BODY-
LOCATION" was P-Marked by the root node “*HAVE-A-PAIN".
Therefore, when “*BODY-LOCATION” is activated from be-
low, we have a collision of A-Marker and P-Marker. When
the collision happens, we send a P-Marker to the next el-
ement of the concept sequence (i.e., “*pP[GA]”). This is
continued and the last element “*PAIN-SPEC” gets accepted
after acceptance of <i t a i>. So we activate the root node
“*HAVE-A-PAIN". One thing that happens (that we did not
have at phonetic level) is that we perform the ‘concept
refinement’!®, which is essentially what understanding in
DMA means. It involves identifying the specific instance
of the accepted root concept that represents the input to the
understanding system. In our case, the memory searches for
the node “*HAVE-A-HEADACHE” (or creates it if non-existent
yet), that is underneath “*HAVE-A-PAIN” and packages the
nodes “*HEAD”, “*pp[GA]”, “*PAIN-SPEC[UNSPEC]” that are
specific to the current input. Since concept sequences are
generic and attached to relatively higher nodes in abstrac-
tion hierarchy, it is this concept refinement that specifies (or
identifies) the specific input to the system. After concept
refinement, we now have the node “*HAVE-A-HEADACHE”
activated, and that is the result of the understanding. Of
course, in the actual system, the spreading activation con-

‘°Lytincn[l984] and Tomabechi[1987b] have detailed discussions of
‘concept refinement’,




tinues in a parallel manner because the concepts “*BODY-
LOCATION” and “*HAVE-A-HEADACHE” (and the concepts in
between them) may be a part of some other higher level con-
cept sequences in abstractions such as scriptal and episodic
memory packets.

6.3 Contexual Activity

We have two types of contexual activity in $DMTRANS:
1y C-Marker based activity; and 2) episodic/thematic based
activity.  C-Marker passing is an algorithm introduced
in Tomabech[1987a] in which text input based DMTRANS
passed C-Maker (for Contexual-Marker) around in mem-
ory every time a contexual (thematic) root node was ac-
tivated. The contexual (thematic) root nodes are the nodes
that increases the potential activities of the nodes that are
likely to be heard under the given context and the DM-
TRANS paper contains an example handling the seman-
tic ambiguity of “paper” for ‘physical object paper’ and
for ‘thesis’ under different contexts using the C-Marker
passing. Tomabechi&Tomita[1988a] has a similar thematic
mar  passing which integrates memory-based pragmatics
into unification-based syntax and semantics.

The episodic/thematic based activity is triggered by the
concept sequences that are with normally extra-sentential
span. These include scriptal knowledges and explanation
patterns that are triggered by acceptance of series of concepts
that constitute such sequences. These episodic and thematic
oredictions are utilized because P-Markers are passed around
1t these abstract levels just as in the phrasal levels. This way,
strong predictions are always active as part of higher level
episodic/thematic) concept sequences as well as increases
n potential'! contexual activities through C-Marker passing.

7 Other Components of ®DMTRANS

We have focused our discussion in this paper on the method
bur system uses to handle the phonetic input stream as part
>f an understanding system. $DMTRANS is a machine trans-
ation system that works on speech inputs and we will briefly
les ; other parts of the system. In essence, our system
sonsists of three parts:

e Speech recognition hardware and control programs

¢ An understanding module utilizing the spreading acti-
vation mechanism

e A generation module that utilizes explanatory genera-
tion.

The Speech recognition hardware is supplied through
ne courtesy of Matsushita Research Institute, and provides
ligh-speed speaker-independent speech recognition. The de-
ails of this hardware are described in Morii, er al[1985] and
liracka, er al[1986]. The understanding module that we
iave described in this paper receives a hypothetical stream of

"1 s potential in the sense thal C-Markers do not activate the node di-
sctly but will activate the node, when the node gets ambiguous activations
1 the future, by chosing the node over other candidate nodes that did not
:ccive previous C-Marker passing.
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phones and performs the spreading activation marker pass-.

ing memory activity as an understanding of the input. The
result of the understanding is what is left in memory after
the activation of memory stablizes. Generation is performed
directly from the state of thé memory after the understand-
ing. In essence, generation is performed to output the sen-
tences in the target language that are identified by what is
left after understanding. Interested readers may want 1o refer
to the explanatory generation section of Tomabechi[1987b]
that describes DMTRANS, which translates a written text in-
put. Through explanatory gencration, DMTRANS translates
“Gionshoja no kane no koe shogyomujo no hibiki ari” into
“Sound of bell at Gionshoja has the tone of “shogyomujo”
(impermanence of all phenomena in world). The concept
“shogyomujo”, which does not have lexical entry in En-
glish, was explanatorily translated as “impermanence of all
phenomena in world”. The generation mechanism outputs
the original word in double quotes and generates an explana-
tion of the source lexical entry in parenthesis in the cutput.
PDMTRANS utilizes the same explanatory generation mech-
anism as DMTRANS, and is capable of performing the same
type of generation.

8 Future Possibilities

We have seen the parser part of PDMTRANS in detail which
essentially is a DMA parser that performs spreading activa-
tion guided marker passing from the phonetic level. Com-
bined with the DMTRANS generator, PDMTRANS is a transla-
tion system and with the appropriate speech synthesis hard-
ware added (we utilize DECtalk!? at CMT), the system is a
speech to speech translation system with strong contexual
understanding capability. Machine translation; however, is
not the sole viable area of adopting #DMTRANS architecture
for speech understanding. For example, CMT has developed
a natural language interface system based on DMA architec-
ture (DM-COMMAND, Tomabechi&Tomita[1988b]), which
PDMTRANS can replace its parser to make it a speech com-
mand and query system. With the fast processing through
the spreading activation algorithm and the strong contextual
understanding capability, the system is a viable alternative
to existing speech understanding systems particularly under
noisy environment and for pragmatically difficult inputs.
As we have seen, the spreading activation guided
marker passing algorithm is massively parallel in nature. It
leads to our understanding that #DMTRANS is ideal for the
new generation computer architectures where massively par-
allel processings are supported from the hardware level. We
currently have a version of #DMTRANS on MULTILISP paral-
lel lisp environment; however, we would like to see the sys-
tem to run on much more massively parallel architecture!?
which can support the parallelism of every phonemic and
concept sequence recognitions performed concurrently at all
levels of abstractions and triggered by multiple morphopho-
netic, phonological and semantic hypothesizations of con-

1ZDECtalk Model DTCO1-AA by Digital Equipment Corporation.
3Such as neuro-computer (ype architectures and connection machine
(Hillis{1985]) type architectures.
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tinuous speech inputs.

9 Conclusion

We have reported an integration of phonological and contex-
ual knowledge in speech understanding in a massively paral-
lel spreading activation marker passing network. As we have
scen, the method of marker passing spreading activation is
uniform from the phone level up to abstract thematic struc-
tures. Because a phonetic input stream can be hypothesized
in multiple ambiguous and semantically acceptable ways,
we have seen the necessity of both phonological knowledge
and contexual knowledge participating during the course of
direct memory access translation. Parallel processing of con-
currently active phonemic and conceptual sequences seems
solely attainable in a DMA style spreading activation archi-
tecture. In the traditional build-and-store model, since the
result of parsing is lost after the processing of each sen-
tence, the context for subsequent translations is hardly ever
established, whereas in our DMA model, context is naturally
rec ‘ed as what is left in memory after understanding pre-
vious sentences as well as what is being recognized as parts
of currently active concept sequences. With the explana-
tory generation mechanism added, the #DMTRANS model of
translating a speech input is an extremely viable option for
future parallel (fifth generation) computers, in which mas-
sively parallel processing activity is hardware-supported'*.
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APPENDIX 1: Implementation

Speech recognition hardware was by Matsushita Research
Institute and is used in our system by the courtesy of the
Institute. In addition to the firmware written control codes,
the low-level control program is written in ‘C’ for the de-
vice hardware. Current implementation of ®DMTRANS runs
real-time’® on HP9000 Al Workstations and is written in
HP CommonLisp. The object-code of the speech recog-
nition control programs is dircctly called from inside the
CommonLisp code. Also, non-real-time!® versions are im-
plemented on IBM-RTs using CMU-CommonLisp and MUL-
TILISP. The parallelism of spreading activation is simulated
using lazy evaluations in CommonLisp versions. Parallelism
in the MULTILISP version is supported at the operating sys-
tem level on ‘Mach’ (Rashid, er a/{1987]) at CMU. MULTI-
LIsP is described in Halstead{1985], which is a parallel lisp
developed at MIT for Concert multi-processors and is now
implemented on the distributed operating system ‘Mach’ at
CMU. Because MULTILISP is a true parallel lisp, the MUL-
TILISP version of ®DMTRANS runs on any parallel hardware
that supports MULTILISP. MULTILISP has already been im-
plemented on several types of parallel computers including
Concert, Multi-vaxens and Encores.

APPENDIX 2: Distinctive Feature
Matrix Using SPE

Below 1s the distinctive feature matrix used
in our system for Japanese:

p t (¢) k b d g () s z r
cons + 0+ o+ o+ o+ o+ o+ o+ 4 +
syll - = = = - - = = - -
son - - - - = - 4+ - - ¢
high - - + - -+ o+ - - -
back - - - 4+ - - o+ 4 - - -
low - - - = = = - - - -
cor - 4+ o+ = + - -+ o+ 4
voice - - - = + o+ 4+ -+ o+
cont - - - = - - - + + -
nasal e -

m n = w J h i1 e a o u
cons + + o+ - = - - - - =
syll T S T T T
son + 4+ 4+ 4+ o+ -+ 4+ o+ 4+
high - - + 4+ o+ -+ - - - g
back - - o+ + - - - -+ 1 3
low e T S
cor -+ - - - = - - oL
voice + o+ o+ o+ 4 o+ o+ o+ o+
cont - - = 4+ 4 + o+ o+ o+ 4
nasal + o+ o+ - - - - - - .

15By ‘real-time’ we mean that what is spoken into the microphone is
translaied into sentences in the target language with a negligible delay.

'6Non-real-time on IBM-RTs simply because hardware connections be-
tween RTs and the speech recognition hardware are not currently supporied
and therefore, processings are done via network.”




