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Abstract
This paper describes the ’iMCPN (Head-Driven Massively-Parallel Constraint Propagation Network) architec-

ture which is a hybrid architecture of symbolic and subsymbolic neural networks. We claim that traditional

natural language models have assumed a monotonic compositional buildup of the meaning of constituents. How-

ever, they are inadequate in performing meaning assignment based on the dynamic recognition as a whole. Qur

proposed architecture handles contextually sensitive linguistic phenomena through constraint application from

both a priori given procedural knowledge as well as subsymbolic pragmatic knowledge learned directly from

the actual sentential inputs, while retaining the strict syntactic and semantic processing that has been attained

in traditional computational linguistic schemes. Also, as an architecture for natural language processing, the

integration of a head-driven massively-parallel constraint propagation network with a time-delay neural net and

recurrent neural net is a viable paradigm for future speech-to-speech translation systems.

1 Introduction

“In attacking the formalist conception of arithmetic, Frege
says more or less this: these petty explanations of the
signs are idle once we understand the signs. Understand-
ing would be something like seeing a picture from which all
rules followed, or a picture that makes them all clear. But
Frege does not seem to see that such a picture would itself
be another sign, or a calculus to explain the written one
to us.” ([Wittgenstein, 1933]). Over 20 years of theoreti-
‘cal and practical investigation in natural language process-
ing under the massive parallel hypothesis and the recent
progress in parallel distributed (neural-net) processing of
natural language is now beginning to show us a picture of
human language processing, in which the long tradition of
the Frege-Montague view of decomposable “Intelligence”
{or monotonic compositionality of “meaning”) ! leaves the
inevitable impression of being obsolete.

The WMCPN (Head-Driven Massively-Parallel Con-
straint Propagation Network) model, introduced in this pa-
per supports the paradigm of natural language processing
s a memory activity and diverges from Fregean traditional
parsers in that: 1) it presupposes the dynamic participa-
tion of symbolic and subsymbolic information from differ-
ent levels of abstraction to determine the identity of con-

"Visiting Research Scientist.

! Fregean Principle of Compositionality: “The meaning of the whole
is a function of the meaning of the parts and their mode of combina-
tion” ([Dowty, et ol., 1988)).

stituents; 2) the meaning of even the smallest parts (such as
lexical definitions) is modified by the sentential and extra-
sentential environment because the time-sensitive represen-
tational transformation network constitutes part of the lex-
ical configuration?.

The model is hybrid in that the massively-parallel sym-
bolic constraint propagation network which retains the
ability to perform symbolic operations such as variable-
binding, compositionality, and other symbolic inferential
tasks? is integrated with an acoustic time-delay neural net-
work and a recurrent neural network, both of which co
tribute the strength of gradient descent network le
ing and fully distributed representation. In particu
the subsymbolic time-sensitive patterns of activation w
are captured in a recurrent network contribute contex
priming effects based on the a posteriori captured sen
tial regularities, whereas the syntactic, serﬁantic, and prag-
matic knowledge in the symbolic layers of the architecture
is a priori given. As a speech-to-speech translation system,
the HMCPN-MT system has five parts:

s+ Time-Delay Neural Network Phoneme Recognition

In other words, the state of the recurrent network which is con-
nected to a lexical node constitutes a part of the lexical meaning
representation.

3Case-based reasoning, for example ([Martin, 1989}). Also [Pinker
and Prince, 1988] claim “symbolic models of language were not de-
signed for arbitrary reasons and preserved as quaint traditions; the
distinction they make are substantive claims motivated by empirical
facts and cannot be obliterated unless a new model provides equally
compelling accounts of those facts.”
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Figure 1: 1M CPN-MT Architecture

+ Constraint Propagation Inheritance Network
¢ Subsymbolic Priming Recurrent Neural Network
o Memory Access Generator

¢ Speech Synthesis Module

In this paper, we will be focusing our discussions on our
architectural paradigm for symbolc and subsymbolic recog-
nition of natural language input. We will also review our
underlying philosophy of natural language recognition. We

will include some of our proposals for implementing our -

model on a parallel machine hardware. We will not discuss
the issues of generation in this paper, which is discussed in
detail in [Tomabechi, et al., 1989].

2 Overview of our paradigm

2.1 Critique of Traditional Paradigm

“A word’s full concept is defined in the memory model
to be all the nodes that can be reached by an exhaus-
tive tracing process, originating at its initial, patriarchi-
cal type node, together with the total sum of relation-
ships among these nodes specified by within-plane, token-
to-token links.” ([Quillian, 1968]). [Quine, 1971] observes
“Concepts are not composed, layer by layer, from more
primitive, already acquired concepts; instead, the whole
cluster of concepts forms a complexly interacting web with
no clear levels. The task of acquiring a single concept
is at best an idealization, for in learning a new concept
we will almost certainly alter others, so that our beliefs
are as consistent, coherent and accurate as we can make
them.” These original claims sound intuitively unques-
tionable. However, in the long tradition of natural lan-
guage processing, it has been taken for granted that we
can extract a certain portion of a declarative semantic net-
work (or simply a frame type predicate value aggregation)
and call it a semantic representation of an ifput. Some-
times these frame representations, isolated from the origi-
nal semantic network with certain variable instantiations,
are called “conceptual structures” and viewed as a mean-
ing representation of an input sentence. However, there is

{Subsymuchz Foming)

a need to distinguish *representing’ and ‘assigning mean-
ing’. Tor example, a machine (program) readable ‘repre-
sentation’ of a linguistic input is no more than a scheme
of changing the form of representional content of the input
from one representational scheme (such as English, which
a large number of humans use) to another (such as config-
urational trees and lunctional structures, which Common-
Lisp programs use). In other words, a parser which con-
verts English to functional structures has not *understood’
a sentence by such an activity, 1t has simply changed the
representational form of a linguistic input into something
else’. Thus, a better way to characterize existing ‘natural
language understanding programs’ and ‘parsers’ would be
‘representation transformers’ under our view.

Following the tradition of Frege, the method of build-
ing up the semantics of a sentence as a composition of the
smaller parts (words and phrases) of the sentence is the
prevailing method which traditional representational trans-
formers (parsers) utilize in “building up” their meaning
representations. Some schemes use direct semantic com-
positional rules such as the ones originally introduced by
Montague (e.g. [Montague, 1970]). Others use more im-
plicit schemes of building up compositional semantics, such
as through a series of feature-structure unifications. While
we are not proposing to abandon the basic principle of com-
bining the semantics of parts to build the whole, we claim
that the meaning of the parts may also be determined by
the meaning of the whole. A problem with the schemes of
‘compositional semantics’ is that at any given point in the
analysis, constraints for building constituents are local and
predetermined (such as in unification augmented context-
free parsers) and every locally acceptable structure (which
may be numerous) is built-up from the input. This is be-
cause there is no way in the existing framework to dynami-
cally modify the constraints for constituent build-up based
upon the global environment at the time of recognition. A
further paradox® for the schemes of the traditional com-
positional semantics is that in order to assign meaning to
the result of the composition in the utterance environment
(context), the elements of composition need to be decom-
posed again to be evaluated in the given environment. ©
This is because an environment cannot be determined (ina
unidirectional upward composition) until the whole is com-
posed. In the Fregean principle of compositionality, there

*For example, in Montague’s framework, “translation into Inten-
tional Logic is merely a convenience in giving the semantic interpre-
tation of a natural language, not an essential part of the process”
([Dowty, et al, 1988]). It is the cvaluation of the representation in
the context (or model) which performs the meaning assignment.

*Criticisms for the Fregean Principle of Compositionality is not at
all new (e.g. [Chomsky, 1975]). However, such criticism combined
with the eutonomy of syntaz hypothesis has led to research in syn-
tax being severed from semantics (and pragmatics) and to treating
semantics as a black box. Thus narrowing the coverage of linguistic
phenomena to an arbitrarily small size excluding any memory-based
activity.

®Actually, in unification-based formalisms, if such an action is al-
lowed, behavior of the parser is no longer capturable through opera-
tions in the subsumption lattice of feature structures. In other words,
such a grammar of language is not formulatable within the unification-
based grammar formalisms, such as HPSG and LFG.
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is an underlying assumption that the environment for eval-
vating the parts is all predetermined (i.e., a2 Montagovian
‘model’ is already selected). However, in real utterance sit-
uations, such an environment is dynamic and cannot be
determined without the knowledge of the whole (which it-
sell is a target of composition).

2.2 Constraint Propagations

The i CP paradigm can be viewed as a model of natural
language recognition in which input (natural language or
other sensory input) imposes constraints that are propa-
gated from the lower classes in the abstraction hierarchy
to the higher. In other words, the new features or con-
straints are reversely inherited from the lower class
to the upper in order to determine the meaning (or iden-
tity) of the input captured by the network of concepts
- which received (reverse inherited) the new features from
the nodes that are below them in the abstraction hierar-
chy. To be more precise, we view natural language “under-
standing” as a recognition process, in which already known
concepts {ideas, episodes, memory about things, etc.) col-
lectively receive new features which are screened through
the grammar’ of the language. By such an activity, the
input language is recognized and identified with the exist-
ing concepts in memory, while the existing network itself
is modified by accepting the constraints that are imposed
by the input activations.

3 The HMCPN Recognition

3.1 Neural-Net Phoneme Recognition

Time-Delay Neural Net is a neural network which has the
ability to represent relationships between events in time.
Such a relational feature abstraction is learned by the net-
work invariantly under time transitions. Input to a unit
is multiplied by the number of delays (plus undelayed in-
put). Weights are associated with each delayed input to a
hidden unit and the weighted sum is passed to a semi-
linear threshold function to compute the output of the
unit. When the Time-Delay Neural Network is used for
phoneme recognition, the lowest input layer of the multi-
layer network receives the spectral coefficients as input. We
have adopted the Time-Delayed Neural Network which was
developed at ATR ([Waibel, et al, 1989}, [Sawai, et al,
1989], etc.), and is currently jointly researched at ATR and
Carnegie Mellon University. Currently, TDNN architecture

TIf we can view the grammar of language to be the information
that maps the input language to the collection of concepts which are
recognized and organized in a manner consistent with the already
existent knowledge (memory) about the world, then the grammar of
language for the conceptual inheritance retwork is the constraints
that are imposed in order to guide {map) the recognition and re-
organization of the conceptual inheritance (i.c., memory) network in
order to accept the input language. As we will review in alater section,
“meaning” representation in such a network is a time-sliced state of
the network after the application of the constraints iinposed by the
input language itself, which is not extractable by isolating certain
feature value pairs from the whole network.

has been shown to be a suitable architecture for vocabulary-
independent connected speech recognition ([Miyatake, et
al., ms]) recording a rate of over 95% accuracy® with-
out top-down (and lexical) selectional restrictions (i.e., full
vocabulary-independence).

The phonemic knowledge in the #MCPN-MT architec-
ture is recorded in terms of time-delayed patterns of acti-
vations captured in the hidden layers of the time-delay net-
work. Also, the acoustic knowledge captured in the time-
delay hidden layers is modular in the sense that it is vocab-
ulary independent. In the hidden layers, no specific nodes
represent the specific phoneme activations. Instead, it is
the time-delayed patterns of activations which are captured
in the weights of the time-delay links. Thus, the acoustic
representation in the phoneme-recognition network is fully
distributed. It is at the output layer that specific phonemes
are activated (in sequence) as a result of the recognition of
the time-delay network. Each unit in the output layer of
the time-delay network is connected to a phoneme node
in the symbolic inheritance network. Thus, the phonemic
activation from the TDNN to the constraint propagation
inheritance net is the bridge from the sub-symbolic acous-
tic input network to the symbolic constraint propagation
network.

3.2 HMCP Sentential Recognition

Under the iMCP model, conceptual nodes representing
argument-taking predicates carry subcategorization fea-
tures which specify syntactic properties (such as case) of
constituents which can fill their argument positions. Syn-
tactic information such as case, number, and person is
propagated up from noun phrases in a package of ‘head
features’ which eventually collides with the constraints in
subcategorization frames. The following three things are
propagated from lexically activated nodes: 1) head-features
attached to the node, 2) identity of the instance node asso-
ciated with the current lexical activation (i.e., which spe-
cific instance should be associated or created with the cur-
rent lexical activation) and 3) the specific cost (weight)
associated with a given lexical activation®.

Before introducing the 1M CP algorithm, we would like
to briefly discuss our processing principle used to attain
hybrid symbolic and subsymbolic architecture. One ma-
jor difficulty of constructing a hybrid architecture of a
massively parallel symbolic network and a fully-distributed
connectionist network lies in the fact that the representa-
tional units of the nodes in the two systems are incom-
patible. This is due to the fact that the granularities of
node activities are different and the grain sizes'® of mas-

8See references cited above.

9The cost-based ambiguity resolution schemes are discussed in de-
tail in [Tomabechi, et al., 1989} and [Kitano, Tomabechi, and Levin,
1988] and are not discussed in this paper.

Y'By way of definition, we will be using the following notion of
levels of parallelism in this paper: Fine grain - the level where basic
operations of the system are parallelized. For example, firing of each
node, basic arithmelic operations on each input, etc.. Medium grain
~ the level where functional units are parallelized. By this definition,
concurrent applications of various constraints at various locations of
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sively paralle] activities in the two networks are incompat-
ible. The activity in the constraint propagation network
is medium to coarse grain, requiring application of func-
tional constraints (such as in role-filling activities), and
the node representations are symbolic and structural. On
the other hand, the activity in the neural network is fine-
grain (sigmoid firings) and node representations are noth-
ing more than simple vectors. Due to the diflerence in
the granularity of the parallelisms (and representational
units), attaining the coexistence of both systems in the
same massively-parallel processing architecture is not triv-
ial. For example, realizing neural-network recognition on
massively-parallel register machine hardware (such as Con-
nection Machine) may be straightforward. However, realiz-
ing a realistic massively-parallel symbolic constraint prop-
agation mechanism on the same architecture is non-trivial.
This is because the granularity of parallel symbolic pro-
cessing is too large for such a machine architecture!!.

Our solution to this issue is the separation of algorithmic
massive-parallelism from the fine-grain data-level massive-
parallelism assumed in massively parallel spreading acti-
vation architecture through the introduction of the no-
tion of light weight processes'? (lwps). A lup is a process
that is spawned explicitly by other lwps (or by an initial
process)!®. When a lwp completes its evaluations, it sim-
ply goes away (i.e., need not be killed by an external pro-
cess). By making numerous lwps work at the same time
(with little or no synchronization between them) on dif-
ferent nodes, massively parallel processing can be attained
without a hardware massive parallelism. Also, any number
of lwps can work on one node and therefore, if necessary,
the parallelism can be even finer than the node level par-
allelism. Since a lwp may work on a functional constraint,
a mixture of fine-grain and medium-grain parallelisms can
be supported. Thus our model has three distinct levels of
processing: 1) Node level: this is the level where phonemic
and conceptual nodes receive and fire activations, i.e., the
representational level of memory nodes. 2) Light weight
process (lwp) level: this is the level at which actual mas-
sively parallel processing is performed. Any number of lwps
may be created during processing, independent of the num-
ber of nodes or processing units. 3) Processing unit level:
this is the level of actual processing hardware. Any num-
ber of processors may be configured depending on the hard-
warearchitecture. Thus, in our model, the representational
level, the process level and the hardware level are explicitly
separated.

memory would be medium grain. Coarse grain - parallelism at the
level of sub-modules of the whole system. Parallel processing of input
in different system modules may be coarse.

! Also, the node communication speed in a looselycoupled, local-
memory massively parallel machine architecture (normally the target
machine for hardware-supported, marker-passing algorithms) will be
a bottle-neck.

2 As supported in Mach through ‘thread’. In our implementation,
lwps are explicitly provided by CLiP Parallel CommonlLisp.

B Each lwp may run on any available processing unit (processor) and
is scheduled by a separate process. Each lwp is capable of accessing
the entire shared memory and may lock or unlock and read/write any
part of the shared memory.

3.2.1 HMCP Algorithm:

We have three types of nodes in the constraint propagation
network: lexical nodes, inheritance nodes, and memory-
instance nodes. Lexical nodes are the nodes with phono-
logical entries (phonemic nodes) attached to them. Two
kinds of lexical nodes exist: head-node and ‘complement-
node. Head-nodes have subcategorization feature attached
to them (i.e., package complement nodes). Complement-
nodes do not. Inheritance nodes are the nodes which are
organized as a hierarchy and are a superclasses of lexical
nodes. Memory-instance nodes are the specific instances
of lexical and inheritance nodes recorded in the network as
experiential memory.

We have four kinds of layers in the network: 1) Static
Layer (SL); 2) Potential-activation Layer (PL); 3) Acti-
vation Layer (AL); and 4) Decaying Layer (DL). The SL
is where nodes by default belong. The PI is where head
nodes and nodes packaged by head nodes initially belong.
The AL is where nodes which received constraint propa-
gation belong. The DL is where nodes in the AL move to
after a given period. Nodes in the DL eventually move to
the PL. Now let us provide the uMCP algorithm below:

function PREPARE-NODES;
for (NODE in ALL-NODES) do
if (NODE is 2 head)
then PREPARE—GRAMHATICAL-LINKS(NODE);
if (NODE is a head or an element of sucat list of a head)
then push NODE into PL:
end;

function SENTENTIALLY~RECOGNIZE(INPUT-STREAM) :
for LEXICAL~STREAM in INPUT~STREAM do
ACTIVATE-LEXICAL-NODE(NODE) ;
GLOBAL-INCIDENTS;
end;

function ACTIVATE-LEXICAL-NODE(NODE) ;
timestamp NODE with the initial activation time;
push NODE into AL;
Create an instance of NODE;
create an HF-MARKER containing:
1) head~features of NODE
2) pointer to the created instance.
for all PARENT of NODE do
recursively climb up abstraction hierarchy
and evaluate ACIVATE-NODE(PARENT);
end; .

function ACTIVATE-NODE(NODE);

if (NODE is in PL)
then leave HF-MARKER on NODE;

it (NODE == #TOP-UF-INHERITANCE-NETWORK«)
then GLOBAL~INCIDENTS;

end;

function GLOBAL~INCIDENTS;
for (NODE in ALL-NODES) do
INVOKE-ROOT-INSTANCE(NODE) ;
INSPECT-ROOT-INSTANCE(NGDE) ;
start all created light-veight-processes
i3i7 (i.e., massive-parallelism).
end;

function INVOKE-ROOT-INSTANCE(NODE) ;
if (MODE is an instance of a head
and its subcat is still unsaturated)
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then create light-weight-process for
GRAB-ROLE-FILLERS(NODE) :
end;

function INSPECT—ROUT"INSTANCE(NDDE);
if (NODE is an instance of a head
and its subcat is now saturated)
then
timestamp NODE with the accepted time;
create an HF-MARKER containing:
1) head-features of (the parent of) NODE
2) pointer to NODE
ACTIVATE~NODE (NODE) ;
end;

function GRAB-ROLE-FILLERS(NODE);
for (ROLE in ROLES of the NODE) do
Create light-weight-process for

applying all constraints, i.e., head-feature
constraint, linear-precedence, obliqueness-order,
control, etc. If all constraints are met, fill the
ROLE vith the role-filler.

end;

As an input to the (symbolic recognition) top-level
sententially-recognize, TDNN provides the 5MCP senten-
tial recognizer with a stream of phonemes. These phonemes
may be noisy. The schemes to handle noisy input are de-
scribed in [Tomabechi, et al., 1989]. Here we assume the
TDNN provided correct streams of phonemes'. The in-
terface between the TDNN and the sentential recognizer is
attained by directly connecting the phonemic nodes which
are packaged by lexical-nodes in the HMCP sentential rec-
ognizer to the output units of the TDNN.

The function prepare-grammatical-links creates virtual
grammatical nodes as instances of each head node role-filler
complement inheriting all information from the role-filler
complement. Any grammatical constraints may be spec-
ified on the links between the head and the grammatical
instances. Grammatical constraint checking will be per-
formed on these grammatical instances!s. At the beginning
of recognition, prepare-nodes js, evaluated once. Senten-
tial recognitions are performed by evaluating sententially-
recognize. After recognition of one sentence, all AL ele-
ments are moved to the DL.

3.2.2 A Walk through a Parse

Let us review a M CP parsing session by walking through
the parse of Jokn persuaded Sandy to give Mary the book.
The verb persuade specifies that the entity associated with
its object be shared with that of the unexpressed subject
of its VP complement. In other words, persuade speci-
fies that jt subcategorizes for a complement which is itself

"*In other words, input-stream is an ordered set of pholiemes with
each set representing the phonemic sequence for a word. Thus, here
We can regard input-stream to be a sentence and lezical-stream to be
a word.

¥ This buys us a few advantages. Among them, when one head
node has two distinct role links to the same complement node (for
example, giver and receiver roles to the same *person), there will
be no confusion. It also allows for parallel constraint checking for
different roles going to the same node.

unsaturated'®. Thus, therc js a dependency between the
embedding object and the embedded subject. This phe-
nomenon is known as object controfl?.

Prior to the parse, all complement nodes (i.e. all nodes
that potentially satisly an element of a subcategorization
list) are put into the Potential-activation Layer (PL). In
this example, nodes corresponding to persuade and give
contain subcategorization lists as the value of the subcate-
gorization feature. In the node corresponding to persuade,
the constraint NP[NoM] in the subcategorization list is pro-
vided with *PERSON in the persuader (actor)role, so *PER-
SON is added to the PL. *ACTION and all other concepts
coindexed with subcategorized positions are concurrently
added to the PL. All other nodes in the network are in
the Static Layer (SL) (orin a DL if a previous utterance
exists). )

For example, the lexical concept representing the verb

persuade is encoded’® in the network as below:

(def~lex *PERSUADE
(inherits-from *ACTION)
(phonology Ipl Iz} Is] [w] je| }i] {ISED]
(spelling persuade)
(head-feature v-inf-plus)
(control object)

(subcat (n-nom n-acc v-inf))
(roles (actor
argl
arg2))
(holders (*person
*person
*action)))

The head-feature v-inf-plus is also a node which is a part
of a subsumption relation subnetwork for grammatical cat-
egories. It represents the features [maj: v, vform: inf,
aux: plus]’®. Each element at one particular position in
the SUBCAT, ROLES and HOLDERS lists represents the con-
straint for another element in the same position in the other
two lists. Therefore, n in SUBCAT represents the subcate-
gorization constraint for the actor to be a noun and the
semantic (relational) constraint for this position is *person
as represented in the HOLDERS list. Since word order is.cap-
tured through a separate application of obliqueness order
constraints ((Tomabechi and Levin, 1989]), each set of lists
is order independent. The CONTROL feature specifies the
constraints for complement control relations. For example,
if the value of the control feature is object, it postulates
that its object (argl) is urified?® with the first role in the
complement. :

'*The vocabulary in this paper describing linguistic phenomena is
based on the HPSG framework ([Pollard and Sag, 1987}).

Y For detail of handling control verbs and word order (obliqueness)
constraints, please refer to [Tomabechi and Levin, 1989).

18 The representation here is taken from our implementation using
the ‘HyperFrame’ ([Nyberg, 1989]) frame-based knowledge represen-
tation tool. .

*In this particular implementation, head-features and subcatego-
rization constraints are checked by traversing the subsumption rela-
tion network. This could be performed by a unification operation as
well.

In our model, the notion of unification in the context of control
relation is specified by the constraint that the memory instance for
the argl position is the same node as the memory instance for the
first role position in the complement.
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The speech recognition subnetwork which receives the
acoustic input activates the phonemic nodes in the con-
straint propagation network. Once the phonemic sequence
< [illo//n/ > is recognized, lexical-node TIOHN is acti-
vated. The head-features, phonemic and other cost infor-
mation, and memory-instance of *Jonn (i.e., *10HN001,
elc.) are propagated upward in the abstraction hierarchy.
Phonemic cost information is used for phonemic confusion
disambiguation not discussed in this paper ([Tomabechi,
et al., 1989])21. The memory-instance represents the dis-
course entity that John is referring to in the current
utterance?? for the input John. When an upward prop-
agation reaches a node in the PL, in this case *PERSON,
the constraints propagated (such as head-features) are left
on that node in the PL. In this example, the upward con-
straint propagation triggered by John carries the head fea-
ture NP[ALL-CASE], and this is left (along with phonemic
cost and meinory-instance information) on the node *pER-
SON.

When an activation reaches the top of the inheritance
network, lwps are spawned for all head-nodes in the net-
work. If any head-node is already activated, the spawned
lwps in turn spawn children lwps for each role of the head-
node to check their constraints. Grandchildren lups may
be further spawned?® for different types of linguistic con-
straints which may be applied nondeterministically (includ-
ing subcategorization, linear-precedence, obliqueness-order

constraints). Since at the input of the first word John, no -

head-node is already activated, nothing happens and all
spawned lwps disappear.

The next word, persuaded, activates?® the (lexical) head-
node *PERSUADE, which is subcategorized for NP[Now]
coindexed with *PERSON. The head-nodes which are acti-
vated perform local activities to find their complement role
fillers (this is performed by spawned lwps for each of the
activated head-nodes). The constraint application activi-
ties for subcategorization, obliqueness-order, complement-
order, etc. are performed on the memory-instances under
the current utterance. If all constraints are met, (memory-
instances of) complement-nodes fill the relational roles of
thejr heads. In our example, *PERSUADEQO! tries to find
(memory-instances of subclasses of) *PERSON to fill its per-
suader (actor) role. The head-feature NP[aLL-CASE] con-

1 Other cost information includes reverse cost that is given by the
subsymbolic recurrent network as contextual priming. Detailed dis-
cussions of the schemes to use Tecurrent net activations as reverse cost
in the HMCP network is found in ([Tomabechi, ms)).

n[Kitano, Tomabechi, and Levin, 1988] and [Tomabechi, ms] dis-
cuss the schemes for identity resolution when multiple candidate
discourse entities exist for a noun phrase using top-down {[Kitano,
Tomabechi, and Levin, 1988]) and subsymbolic ([Tomabechi, ms])
contextual priming.

“Since at this grandchildren level, lwps need Lo\be coordinated
through ‘and’ parallelism, depending upon implementations, parallel
spawning may not be advantageous over sequential constraint satis-
factions. Such a trade-off between making the grain size finer and
an increase in overhead varjes depending on the specific machine
architectures.

M Nodes for past tense morphology inherit all lexical node informa-
ticn from the default finite verb forms except that (TENSE PAST) is
added to the verb form features.

straints successfully meet the subcategorization constraint
NP{noM] and therefore, *30un001 fills the persuader (ac-
tor) role. NP[NoM] is removed from the subcategorization
list and the parse continucs looking for the other subcate-
gorized argument of persuade. Other activated head-nodes
(memory~instances) continue their role filler constraint ap-
plication activity (performed by their lwps) concurrently?s,
Recognition of to give Mary the book continues in a similar
manner. When the embedded VP give grabs all three com-
plements satisfying the constraints, the memory instance
node for the head *Givg propagates its head feature up-
wards (which is ((Maj V) (Vform bse) (Auz Minus))). The
intermediate subject control infinjtival VP head 0% intern
grabs the accepted VP (headed by give) as its auxiliary
action complement (and fo infinitival VP gets saturated)
and propagates its own head feature upwards. Finally the
sentential head persuade grabs the VP headed by to for cir-
cumstance role (arg2). The memory instance of give prop-
agates its head-feature upwards and the sentential recog-
nition ends. (The recognition of the next sentence in the
current utterance continues.)

¢ Subsymbolic Priming

Our recurrent network under study is based on Elman’s
Simple Recurrent Network (SRN) ([Elman, 1988)]), which

" we modified to predict two consecutive words rather than

Just one by adding an additional context layer and hidden
layer (Figure 2). The context units in the first context
layer are fully connected to both the first hidden layer and
the second hidden layer. The input units are also fully
connected to both hidden layers. The context units in the
second context layer are fully connected only to the second
hidden unit layer. Each hidden layer is fully connected to
only one output layer. Thus we have 7 weighted connection
layers in the whole recurrent network?7.

The outputs of hidden units in the first hidden layer and
the second hidden layer at time t - 1 are copied one to
one into each respective context unit. At time t during the
forward propagation, the copied hidden patterns of actjva-
tions from the previous forward propagation are fed into
the hidden layers along with the input unit activations. 25

#*The system’s recognition is massively-parallel in nature and mul-
tiple subcategorizations can be active at a given time, as well as dif-
ferent hypotheses for discourse entity reference and phonemic, lexical
and conceptual ambiguity.

?$Our syntactic constraints are based on the HPSG analysis

27 Also, in this configuration, it is possible to increase the number
of context-hidden-output layer sets. Each additional hidden layer will
receive activations from the input layer, its own added context layer,
and preceding context layer(s).

We have adopted Quickprop {{Fahlman, 1988]) as the backprop-
agation learning algorithm which uses:

5(1)

A0 = ST o5

Bw(t - 1)

where S(t) and S(t-1) are the current and previous values of 3E/dvw.
We treat a whole dialog as one data set, because we would like to
capture the recognitions of preceding sentences in the dialog to in-
fluence the recognition of current sentences. We reset the slopes and
deltas once at the beginring of each epoch. Also, weight-updates 15
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Figure 2: Recurrent Network with Two Context
Unit Layers

Instead of representing the token of each word as the input
and the token of the next word as target zs (Elman, 1988]
and [Servan-Schreiber, et al., 1988] did, we have encoded:

* syntactic head-features (major categories, forms?®,
etc.) including agreement features.

¢ locations of nodes in the inheritance hirarchy which
is decodable from left to right in descending levels of
abstractions®°.

The decoded locations in the inheritance hierarchy points
to the nodes in the symbolic network®. Because of this
feature-bundle representational scheme, our network learns
to predict the head-features and semantic features which
can be used by the symbolic part of the system to assist
contextual disambiguation and other inferences.

By compensating for the lack of context sensitiveness
of the syntactic and semantic constraints on discourse en-
tity reference resolutions, unbounded dependencies, and
other phenomena captured in the constraint propagation
network, the ‘context sensitive’ learning of the recurrent
network can assist contextual decision making.

5 Discussion:

The interaction of the constraint propagation inheritance
network and the recurrent network can be viewed as an in-
teraction between the initially encoded symbolic grammar
of language and the learned subsymbolic grammar of lan-
guage. In the constraint propagation network, the syntac-
tic knowledge is provided in the head lexical nodes in the

performed once per epoch.

Such as for verbs, distinctions of finite, present particple, passive,
infinitival and gerundive forms. For noun, distinctions of expletive
extrapositions, pseudocleft, non-refiexive and reflexive pronouns, and
others.

% 0ur method is to devide the vector into groups, each group rep-
tesenting a unique level in the abstraction hirearchy. Each bit in a
vector group represents the branching point of the next level down.
The details of this scheme and the results of our experiments using
the scheme are described in [Tomabechi‘ mns).

3 Activations from the recurrent nelwork is used as reverse costs in
the symbolic network.

form of subcategorization lists. Also, further constraints
written in the lexical head nodes can restrict the recogni-
tion of sentential configurations such as control construc-
tions. Semantic knowledge in the constraint propagation
network is also a priori provided in the form of an inher-
itance hierarchy and role packaging links from the head
nodes to the complement nodes. In the recurrent network,
it is the patlerns of activations of the lexical nodes which
are learned by the network. Therefore, the grammar of the
language (without any distinction of syntax, semantics and
pragmatics) is simply acquired from actual input words and
is not originally provided. The implication of this cooper-
ative activity of the a priori given conceptual network and
the a posteriori acquired knowledge of sentential regularity
in the recurrent gradient descent learning network is that
we now have an architecture that begins to diverge from
the Fregean compositional semantic schemes.

As [Servan-Schreiber, et al., 1988) observe, “In the sim-
ple recurrent network, internal representations encode not
only the prior event but also relevant aspects of the inter-
nal representation that was constructed in predicting the
prior event from its predecessor. When fed back as in-
put, these representations provide information that allows
the network to maintain prediction-relevant features of an
entire sequence.” The representations in the recurrent net-
work and the time-delayed network are fully distributed
and subsymbolic whereas the representations in the con-
straint propagation network are symbolic and local. In the
whole iM CPN-MT network, the meaning of the input lan-
guage is dynamically captured at each point of activation
(time t), and is fully influenced by the utterance recog-
nitions at preceding time points (t - n). The activity of
meaning assignment is performed as activations of differ-
ent layers at different parts of each network at each time
point, and the time-sliced state of the whole network itself
is the meaning representation. Because the representation
is distributed (fully distributed in TDNN and RNN and
partially distributed as activated nodes in the CPN) and
time-sensitive, we cannot cull out a specific portion of the
whole network and call it a meaning representation.

6 Conclusion

It is our claim that the meaning of a sentence cannot be
represented in a stand-alone representation built by mech-
anisms such as traditional syntax/semantics parsers. In
other words, we are claiming that sentence meaning is id-
iosyncratic and specific to the time of recognition. Also
the monotonic buildup of semantic compositions which has
been assumed in traditional natural language processing
systems is inadequate since meaning assignment cannot be
severed from the whole (symbolic and subsymbolic) mem-
ory of the natural language recognizer. We have proposed
an architecture to support a hybrid massively-parallel nat-
ural language recognition at both symbolic and subsym-
bolic levels with different levels of abstractions interacting
with one another during counstraint propagation. Given
that what is being pointed to by a symbol changes dy-
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namically even at the lowest level of the symbolic network
(i.e., at the level of lexical-nodes), due to the time-sensitive
(context-sensitive) changes of the recurrent network which
constitutes part of the lexical-node definitions, our model
proposes the context-sensitive meaning assignment of parts
which is influenced by the whole which is not simply a con-
textual choice from an initially provided finite set of lex-
ical (or structural) choices. The lexically (symbolically)
pointed memory entity itsell is a posteriori modified dur-
ing the recognition and shaped up idiosyncratic to the time
of the utterance.

As a scheme for practical natural language processing,
through the testing of hypotheses both by the a priori
given (constraint propagation inheritance net) and the a
posteriori learned (recurrent net) knowledge of grammar®?,
we claim we can minimize the danger of having the natu-
ral language system be dependent on ad hoc, toy-domain
schemes for contextual and lexical ambiguity resolution.
We believe that integrated symbolic, subsymbolic natural
language recognition is a viable model for future robust
natural language processing and machine translation sys-
tems.

ACKNOWLEDGMENTS

The author would like to thank Akira Kurematsu, Tsuyoshi
Morimoto, Hitoshi lida, Hidefumi Sawai and other mem-
bers of ATR. Thanks are also due to Jaime Carbonell,
David Evans, Carl Pollard, Alex Waibel, Rich Thomason,
David Touretzky, Lori Levin, Sergei Nirenburg, Masaru
Tomita and other members of the Carnegie Mellon com-
munity. I would also like to thank Jun-ichi Tsujii, Hiroaki
Kitano, Margalit Zabludowski, and Kiyoaki Hara for their
continued support.

Appendix: Implementation

The uM CP recognition and the recurrent-network are im-
plemented using Allegro CLiP version 3.0.3 which is a par-
allel Common Lisp from Franz Inc. The system is running
on a Sequent Symmetry which is a tightly coupled mul-
tiprocessor shared memory machine running DYNIX 3.0
parallel Unix. Light weight processes and their scheduling
are directly supported by CLiP. Parallel implementation of
HMCP was originally done on Multilisp running on Mach
at CMU. A serial lazy evaluation version is also running
on CMU-CoMmoNnLisp. The TDNN is implemented in C.
The spectral recognition of the TDNN is non-realtime in
the current implementation. A work is underway to inte-
grate the TDNN recognition at realtime.

*Which can be a top-down discourse knowledge, semantic selec-
tional restrictions, syntactic head/subcategorization constraints, or
acquired statistical knowledge about the regularity of actual senten-
tial uses.
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