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Abstract

This paper describes an architecture for symbolic and subsymbolic interactions during ma-
chine processing of massively-parallel cognitive activities. The model is centered around a
graph-based constraint propagation network which is connected to a recurrent neural network
which provides contextually sensitive predictions. The integration of symbolic massive paral-
lelism and subsymbolic neural net PDP processing provides smooth a posteriori learning to the
symbolic system and focused guided learning as well as strong constraints during recognition
to the nerual network. As the result, the architecture provides the ability to handle strict and
structured symbolic constraints during recognition while attaining a smooth contextual predic-
tion ability applied with the least rigidity and learning of input regularities from actual samples.
The domain discussed in this paper is natural language understanding for demonstration pur-
poses; however the architecture is expected to show equal strength in other modal channels such
as visual inputs.



1. Introduction

MONA-LISA stands for Multimodal Ontological Neural Architecture for Linguistic Interactions
and Scalable Adaptations. The MONA-LISA architecture has the following characteristics:

¢ Integration of neural-net based signal processing and constraint-based symbolic processing.
o Massively-Parallel Constraint Propagation Architecture.

o Multi-Modal Input and Output Channels.

Historically MONA-LISA joins two traditions of massively-paralle] cognitive processing, namely,
symbolic massive-parallelism and subsymbolic parallel distributed processing. As a model of sym-
bolic massively-parallel processing, MONA-LISA follows the tradition of memory-based processing
that was originated by [Quillian, 1968] followed by the Direct Memory Access models developed by
[Riesbeck and Martin, 1985), [Tomabechi, 1987], etc.l. Independently 2 aumber of researchers in
symbolic massive parallelism demonstrated the strength of spreading-activation and marker-passing
approaches especially in terms of contextual inferencing and memory-based natural language recog-
nition. This included the research done by [Hirst and Charniak, 1982}, [Fahlman, 1983], [Small and
Reiger, 1982}, [Charniak, 1983], [Hahn and Reimer, 1083], [Hirst, 1984], [Charniak, 1986, [Hendler,
1986], [Charniak and Santos, 1987), [Norvig, 1987], [Hendler, 1989], and [Norvig, 1989]. The other
tradition of massively-parallel cognitive processing has been the tradition of subsymbolic parallel
distributed processing pursued by connectionists including the work of [Granger and Tiselt, 1984],
[Waltz and Pollack, 1984], [Waltz and Pollack, 1985], [Berg, 1987, (Bookman, 1987), and [Elman,
1988].

The symbolic massive parallelism models’ contribution has been their ability to take advantage
of memory-based processing by directly spreading activation through an a prior: prepared concep-
tual network. Thus, these models have shown strength in handling contextually sensitive tasks and
memory-based inferential tasks that have been architecturally difficult to achieve in the traditional
symbolic models (aé demonstrated in [Kitano, 1989], [Tomabechi and Levin, 1989), and [Norvig,
1989)). However, there are some issues in symbolic cognitive processing that the massively parallel
models have not addressed effectively so far, namely, 1) learning contextual knowledge from the
actual data is difficult; 2) robust application of stored knowledge is difficult; 3) preparing knowl-
edge for different contexts is subject to computational explosion. Learning is difficult because the
knowledge prepared in the form of conceptual networks is too limited in contrast to the actual
variety of cognitive inputs to perform any meaningful inferencing for learning?. Application of
stored knowledge to the input is rigid in the symbolic models because symbolic matching of stored
knowledge has to be exact (as examplified in unification-based processing) and fixed. In symbolic
contextual processing, knowledge for each context has to be prepared separately to accomodate all
distinct and acceptable contexis. Thus the rapid growth in the size of contextual knowledge to be
prepared is inevitable and actually, very few systems have incorporated any significant amount of
contextual knowledge for handling a realistic domain.

}More recently, [Tomabechi, et al., 1988],Tl(itano, 1989}, and [Tomabechi and Levin, 1989).

2For example, if 2 sentential input to a parsing system is found to be illformed syntactically or semantically,
there is no way to determine whether 1) the system should conclude that it needs to modify its grammar under the
particular context; 2) its grammar is incomplete regardless of the context; 3) the input is simply illformed.



Connectionist models have shown the strength of learning from a posterioi provided actual
training sets without being provided with declarative knowledge a priori. This has contributed
to desirable performance in a number of areas including speech and visual recognition. Since
neural net learning is performed in a smooth activation space effectively generalizing the patterns
in the input data, the application of input vectors does not need to be exact and rigid. Also, the
recent work in recurrent neural network has shown the effectiveness of learning time-differentiated
contextual sensitivity of input activations ([Elman, 1088}, [Jordan, 1986]). Thus, the characteristics
of connectionist models seem desirable for handling contextually sensitive inputs. However, a
major obstactle in using these models for abstract cognitive processing (instead of low-level signal
processing) has been that the neural net representations are fully distributed and also that learning
is stored in the hidden layers as dynamic patterns of activations. Thus, neural networks have been
effectively applied as robust vector patiern discrimination modules (such as for discriminating
consonants from fourier transformed vector patterns) that are recognizable through output layer
activation patterns, but the context (time) sensitive lcarning captured in the hidden layer has not

been used for symbolic contextual processing.

Another problem in using subsymbolic connectionist learning for symbolic contextual processing
‘s due to the difference in the granularity of the massive-parallelism. Symbolic massive-parallelism
(spreading activation, marker-passing and constraint-propagation models) require medium to some-
times large grain size in their parallelism to handle the somewhat complex constraints required in
the symbolic inferential tasks. On the other hand, parallelism in PDP neural net models requires
much finer granularity. It is because each unit in the network is a mere vector location and activities
never require complex functional applications. With these difficulties, we still find the appeal of the
cooperative processing at symbolic and subsymbolic levels to be significant. If such an integration
is attained, then symbolic cognitive processing will have the capacity to handle contextual sensitive
inputs with smooth a posteriori learning and robust knowledge applications. 1t will also become
possible for the neural net subsymbolic learning and recognition to take advantage of declarative
symbolic a priori constraints as focus of attention to conduct its learning and as enhancement

during learning and recognition activities.

2. Maultimodal Ontological Neural Architecture

. MONA-LISA is the result of our efforts to connect symbolic and subsymbolic cognitive processing
” during natural language recognition. Figure 1 shows the conceptual diagram of the MONA-LISA
architecture. The left side module is the contextual recognition subsymbolic neural network and
the right hand side module is the constraint propagation symbolic conceptual network. The two
networks are connected by the vector encoder/decoder modules. The constraint-propagation net-
work is also connected to the Time-Delay Neural Network (TDNN, [Miyatake, et al., 1990], [Sawai,
et al., 1989]) speech recognition module. The architecture is designed to realize integration of
subsymbolic PDP network with the symbolic massively-parallel network and therefore, the TDNN
which is a speech recognition neural network is not the only kind of neural net input modal channel
assumed in this architecture. Ior example, visual recognition neural network can equally be well
integrated since the architecture is designed to integrate the neural net processing itself. The actual
data processed in the networks may be different depending on whether they are sonic or visual but
there is no fundamental difference between the actual neural networks used in processing them.
Thus, although this paper focuses its discussion on integration of symbolic and subsymbolic infor-
mation in terms of linguistic constraint processing, the choice of the focus should be regarded as

- e m T moa mme s —hya e VR AEAN S s - T = voor o ey et T o
PO O I E LA R T P EE AT b I VS RS SAR AN

e




MONA-LISA Architecture

[ vector representation ] [ constraint graph representation ]

!

Securrent Neural Net «Prediction » o Constralr?t Propagation
Massively-Parallel Net
Output Layer 1 Output Layer 2 [Input recognition as a
$ resulting memory state]
4
Hidden /ATRU FAR Hidden '?
Layerl O Layer2 e T
‘,/E'szp <Class> "'x\ {Symbolic network of
’ *Register R knowlec%ge. Syntax /‘
<Form> | Semantics / Pragmatics }
Context Layer 2 )
ContextLayerl : » " 1l {Recognition activity as
RN (00010010-) [ e T a graph propagation]
Input Layer P
(10010010- ‘ /T’ “Indef-Ref ™,

R " llexical input]
............ 2 e /
‘ EX : “Do you already havea registration form?” J-———————-'P r TDNN J

Figure 1: MONA-LISA Architecture

pragmatic. The choice is mainly due to the clarity of presentation by actually demonstrating that
existing symbolic models of linguistic cognitive processing can be fully captured in our architecture
while maintaining the a posteriori learning of the PDP architecture. Once we accumulate enough
theoritical formulations of the visual and other cognitive activities at abstract level (similar to the
way linguistic activities have been generalized), we hope to demonstrate the architecture’s strength

in these areas as well.

In the MONA-LISA architeccture, the external signal to the TDNN (and visual NN in the near
future) activates the nodes in the constraint propagation massively-parallel symbolic network and
the stored constraints that are represented by graphs are propagated in the network. The constraint
graphs are directed graphs which can point to any location in the constraint propagation network
and represent both linguistic and non-linguistic constraints which are originally provided in the form
of path equations (and are converted into directed graphs). The input recognition in the constraint
propagation network proceeds by massively propagating constraints that are activated by input
from the singal processing neural network (ie. TDNN) and invokes nodes that received constraints
to perform constraint satisfaction activities, When constraints are satisfied, further activations
are in order. The constraint propagation network is also organized as an abstraction hierarchy
and activations of nodes with low abstraction levels are encoded into vectors through the encoder
module and are fed into the contextual recognition neural network. The contextual recognition
neural network is a recurrent neural network based on [Elman, 1988] with some modifications to
predict further into the future (and to receive priming further into the past). One difference from
Elman’s original work is that the vettors do not represent specific surface realizations of a particular
input (such as a word), instead, its features (syntactic, semantic, etc) are encoded into vectors.
Hence, in our model the output predictions can be decoded and are fed back to the constraint



propagations as further (reverse) constraints.

~ The strength of this architecture is that: 1) Any symbolic constraints can be represented in the
constraint propagation network as long as the constraints are representable using directed graphs
(i.e., unification-based syntax/semantics, semantic networks, logical formulas, etc.). Therefore,
both syntactic and semantic lexicon and memory-based contextual knowledge can be represented
in a uniform framework; 2) Contextual regularities of input can be @ posteriort acquired in the con-
textual recognition network. In the case of dialog processing, we can provide a set of sample dialogs
and the contextual recognition network learns from the actual input. This enhances the contextual
knowledge provided in the constraint propagation network since the recognition in the recurrent
network is fully context sensitive whereas most of the constraints captured in the constraint prop-
agation network are context-free. 3) Most importantly, the variety of constraints captured in the
architecture is not limited to be of that of symbolic and subsymbolic nature. Constraints with
yery different nature can potentially coexist under this architecture. These constraints may vary in
terms of their level of abstraction, aprioricity, compositionality and monotonicity, to name a fewS.
Of course this does not exhaust the variety of constraints potentially capturable in our architeture;
however, note that no previous architecture provided an uniform representation and a singular
processing of any of these constraints dichotomies. In fact most of the systems simply ignored
these problems. (For example, most natural language systems ate purely compositional. Also very
few inference systems incorporate subsymbolic information, let alone nonmonotonic nones.)

3. Graph-based Constraint Propagation Network

The main part of the MONA-LISA architecture is the Graph-based Constraint Propagation Net-
work (GCPN). What is propagated in the GCPN are the graphs® and they may point to any
location in the network and may contain complex paths including convergent arcs and cycles. The
expressivity of the graph-based constraint propagation scheme is significantly greater than that of
so called marker-passing schemes. T'or example, if we want to represent the object control constraint
of English in which the object of the external VP is coindexed with the subject of the embedded VP
“(as in John persuaded Mary to cal sushi), using the marker-passing scheme (such as in [Tomabechi
and Levin, 1989}, and [Kitano, 1989]), we will have to lexically store functional applications of
object control which are triggered by activations of object control verbs. It is because in marker-
passing schemes, markers can simply store bundles of feature and value pairs which are simple (i.e.,

—_—

3By different levels of abstraction I mean the differences in the nature of information from the acoustic spectral
signal level of speech (i.e. physical level) up to the abstract conceptual knowledge that may not have counterparts

in the real physical world.

By level of aprioricity ] mean the nature of constraints in terms of {the degree of) the participation of experience
in acguiring it, i.e., the epistemological questions about the nature of knowledge captured in our representation
especially with regard to the a priori | a posteriori distinction (i€, [Kant, 1781)). In natural language processing,
some constraintsare 8 priori provided to the system while others are acquired through actual recognition of utterances.

By compositional 1 mean the traditional Fregean/Montagovian notion of compositionality that meaning of the
whole is a function of combining the meaning of the parts. Many pragmatic constraints in natural Janguage involve
noncompositional constraint processing. Also, some constraints are conﬁgnrationa\ and others are not.

By monotonic I mean that the information is only added as time passes and never gets subtracted. Also that the
information once added is never modified as time passes.
41mplementational]y, they are pointers to graphs instead of graphs themselves.
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cannot be complex structures to satify path equations) and local (i.e., they do not point anywhere
in the global network). We can also view marker-passing models as strongly restricted versions of
GCPN where graphs are only allowed to be one level deep without convergence or cycles, and are
not allowed to point to locations in the network.

If we allow arbitrary directed graphs to be passed around in the network, constraints such as
control can be handled straightforwardly. For example, in case of object control verbs, we will only
need to store graphs with arcs converging on the same variable that corresponds to the object of
the external VP and the subject of the matrix VP (as is done in the lexical specification of this
constraint in the framework of unification-based linguistic processing). Actually in practice, in
handling linguistic constraints such as control we will only need to store graphs that are converted
from path equations that are used in the unification-based grammar. We will not need any special
functions to be stored for each different type of linguistic phenomenon.

Below is the sample lexicon {from our current MONA-LISA implementation (simulated massive-
parallelism on a 16 CPU shared-memory parallel machine) which processes English input. We have
adopted HPSG ([Pollard and Sag, 1987]) as the basis of providing the linguistic constraints to the
system as graphs. Note that our choice of HPSG is a purely pragmatic one. The theoretical basis
of linguistic formulation can be any other theories that are trivially representable in the graph
notations (such as GPSG [Gazdar, et al, 1985) and LFG [Bresnan and Kaplan, 1982]). In fact,
the constraints captured in the architecture is not assumed to be limited to linguistic ones. Let us
reiterate that we use linguistic information (and HPSG formulation in particular) for the purpose
of the clear demonstration of the architecture at work and should not.be regarded as the only
intended area of actual applications.

The first example is the specification for the concept *JOHN which represents the set of nodes
that satisfies the constraints specified here using path equations:

(def-frame *JOHN
(inherits-from *MALE-PERSON)
(type :lex-comp)

(spelling  John)

(synsem
(def-path
(<0 loc cat head maj> == n)
(<0 loc cat marking> == unmarked)
(<0 loc cont para index> == [[per 3rd]

[num sng}
. [gend mascll)
(<0 loc cont restr reln> == *JOHN)
(<0 loc context backgr> == [[reln naming]
[name JOHN]])
(<0 loc context backgr bearer> == <0 loc cont para index>)
(<0 mem> == <0 loc cont para index iden>))))

When this lexical definition is read into the system the path equations are converted into graphs
internally. In the GCPN, the constraint graphs are stored in synsem values of the nodes and the
top level number 0 arc represents constraints to the node itself. If a node has its complement nodes
the constraints are specified by numbers higher than 0. For example, the lexical specification for
the node *GIVE looks as follows:

LY

(def-frame *GIVE



(inherits-from *GIVE-ACTION)
(type :lex-head)
(spelling give)
(synsem
(def~path
(<0 loc cat head> == [[maj v]
[vform bsel
[anx -]
(inv -]
[prd -11)
(<0 loc cat marking> == unmarked)
(<0 loc cat subcat 1> == <1>)
(<0 loc cat subcat 2> == <2>) :
(<0 loc cat subcat 3> == <3>) o ¥
(<0 loc cont reln> == *give—action) b
(<1 loc cat head maj> == n)
(<1 loc cat head case> == nom)
(<0 loc cont agent> == <1 loc cont para index>) Vo
(<1 loc comt restr reln> == *person)
(<2 loc cat head maj> == n)
(<2 loc cat head case> == acc)
(<0 loc cont goal> == <2 loc cont para index>) i
(<2 loc cont restr reln> == *person)
(<3 loc cat head maj> == n)
(<3 loc cat head case> == acc)
(<0 loc cont theme> == <3 loc cont para index>)
(<3 loc cont restr reln> == *matter))))

TR RS RS AR A UV STV

This way, instead of simply storing simple case-frame type lexical specifications in the lexical
nodes, we would like to provide full graph-based lexical constraints in the lexical level nodes in
the constraint propagation network. Let us provide a sample lexical node definition for the object

control verb persuaded:

(def-frame *PERSUADED
(inherits-from *PERSUADE-ACTION)
(type :lex-head)

(spelling persuaded) i
(synsen
(def-path
(<0 loc cat head> == [[wmaj vl
[vform inf]
[aux +]
[inv -]
[pra -11D
(<0 loc cat marking> == unmarked)
(<0 loc cat subcat 1> == <1>)
(<0 loc cat subcat 2> == <2>)
(<0 loc cat subcat 3> == <3>)
(<1 loc cat head maj> == n)
(<1 loc cat head case> == nom)
(<1 loc cont restr reln> == *person)
(<0 loc conmt agent> == <1 loc cont para index>) |
(<0 loc cont persuadee> == <2 loc cont para index>)
(<0 loc cont persuadee> == <0 loc cont circumstance agent>) ;;; obj control
(<2 loc cat head maj> == n)
(<2 loc cat head case> == acc)
(<2 loc cont restr reln> == *person)
(<3 loc cat head maj> == v)

Y

==



(<3 loc cat head vform> == inf)
(<3 loc cat head aux> == +)
(<3 loc cat subcat 1 loc cat head> == [[maj n]
[case nom]])
(<3 loc cat subcat 2 loc cat head> == saturated) ;;; must not unify
(<3 loc cat subcat 3 loc cat head> == saturated) ;;; must not unify
(<0 loc cont circumstance> == <3 loc contd>)
(<0 loc cont reln> == *PERSUADE-ACTION)
(<3 loc cont restr reln> == <3 loc cont reln>)
(<3 loc cont restr reln> == *action))))

Thus the two equations:

({ 0 loc cont persuadee ) == ( 2 loc cont para index })
({ 0 loc cont persuadee ) == { 0 loc cont circumstance agent )

can easily specify the control constraints lexically in the network. With an addition of a specification
for the intermediate subject control VP head to the constraints are adequate for handling the object
control phenomenon. One thing to be noted is that because we use HPSG-based constraints to
be specified as graphs in the lexical nodes in the GCPN network, naturally, the lexical nodes
look much like HPSG lexical entries. However, the GCPN processing scheme does not assume
unification as the only type of graph constraint checking mechanism®. More importantly, as we
will see in the next section, lexical-nodes are parts of the GCPN network and the network includes
constraints at different levels of abstraction and compositionality as well as sentential HPSG-based
unification-based grammar syntax/semantics. Also, in GCPN whatever is bound to the variables
in the constraints graphs are actual instances in memory for the current utterance and are not
strings (or symbols) independent of contexts.

4. The GCPN Natural Language Recognition Algorithm

The GCPN has 5 types of nodes: conceptual-class nodes, lexical-head nodes, lexical-complement
nodes, memory-instance nodes, and phonological-activity nodes. The conceptual-class nodes are
nodes in the high levels of abstraction and are used for discourse and episodic recognition. Lexical-
head nodes are nodes that are phonologically invoked with lexical activations and they package
the complement nodes. Lexical-complement nodes are the nodes that are lexically invoked and
do not have their own complements. Memory-instance nodes are actual instances of lexical-heads
and lexical-complements that are specific to the current utterance. Phonological-activity nodes are
the nodes that represent phonemic units and are connected to the TDNN output layer. We will
focus activities on lexical nodes and instance nodes in this paper and we will not discuss activities
of conceptual-class nodes and phonological nodes. (Please refer to [Tomabechi, et al., 1988] and
[Kitano, 1989] for activities of those nodes.)

Below is the central part of our sentential recognition algorithm for word level activation from
the TDNN.

function sentential-recognize (input-stream)

5We use graph-unification as currently desirable scheme of cheking graph-based constraints, but other method
may replace unification in the future implementations.



create-process (recognize-lexical (input-stream));
invoke-global-incidents;
for all NODE in Decayinglayer do

print-node NODE;

function recognize-lexical (input-stream)
reset activities in Activation Layer and Decaying Layer
for word-hypothesis in input-stream do

create-process (activate-lex-node (word-hypothesis));
invoke-global-incidents;

function activate-lex-node (word-hypotesis)
create instance of word-hypothesis
and make a copy of constraint graph with addition of an ‘mem’
arc pointing to the created instance;
if the node type is lexical-head
then propagate copied (and modified) constraint graph upward;

function invoke-global-incidents ()
for head-instance in Activationlayer do
create~process (grab-subcats (head-instance)) ;

function grab-subcats (head-instance)
for arcs specified in subcat graph (i.e, <0 loc cat subcat>) do
if conceptual restriction node exists
(i.e, <loc cont rest reln> has value)
and if that node has received the constraint graph propagation
then unify the subcat graph with the propagated graph
if unify succeeds and obliqueness order is met
then store result destructively in head-instance;
propagate synsem graph upward;

Originally, the GCPN is configured hierarchically in terms of conceptual inheritance. Graph propa-
gation occurs only upward in the inheritance hierarchy and never horizontally (unlike many maker-
passing models). Conceptual relations (other than inheritance) between lexical nodes are specified
through constraint graphs (as seen in the sample entry in the previous section). For example,
Figure 2 is the part of the CGCPN that participates in the sentential recognition of the input John
persuaded Mary to give Sandy sushi which encompasses two control relations (i.e., persuaded object
controls Mary and to subject controls Mary).

When each word is input, an instance of the corresponding lexical node is created. Also the
stored constraint graph is copied and modified to point to the created instance. If the lexical node
is a complement then the graph is simply propagated upward and the global massively parallel
activity is invoked when the activation reaches the top of the hierarchy. If the corresponding lexical
node is a head-complement then the global incidents are invoked immediately. During the global
invocation, instances of activated lexical-head nodes try to fill the complements (subéategorization
elements) by unifying the stored subcat graphs with the constraint graphs propagated from the
activated lexical complements. If the subcat list saturates in the activated-head instances through
successful unifications, then the node states decay (put to DecayingLayer). All nodes originally
belong to StaticLayer and when they are lexically invoked their state changes into activated (moves
to ActivationLayer). Only the saturated lexical-head nodes move to the DecayingLayer. So at the
end of the recognition, the constraint<0 graphs (i.e. the constraint to itself) of the nodes in
the DecayLayer contain information that can be used for further processing (such as generation).
Actually, as we can sce from the sample output, the printout of the constraint 0 graph of the




GCPN result state (After the recognition of “John Persuaded Mary to give Sandy Susi”)
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Figure 2: A Portion of GCPN representing control relation

Decaying node looks exactly like that of the output of a unification-based parser. This is expected
because our graph constraints propagated in the network are initially prepared according to the
unification-based grammar constraints (HPSG). One thing to be reiterated here is that there still is
an underlying difference between this model and the unification-based parsing schemes in that the
constraint 0 graph actually contains pointers to the real instances in memory (such as Mary001)
instead of a simple string (such as “Mary”). Therefore, the MONA-LISA scheme allows for different
kinds of memory-based and contextual inferences at any point of recognition activity. Another
thing to note is that during these recognition activities many nodes in the network receive priming
activations from the conceptual recognition neural network, which is the topic of discussion in the
next section.

5. Integrating Subsymbolism with Symbolism

The advantage of integrating symbolic massive parallelism with the subsymbolic massive paral-
lelism seems clear. First, such a system can provide a posteriori acquired contextually sensitive
recognition learned in a smooth activation space, whereas a priori given or derivable symbolic
knowledge may be rigid and sometimes ad hoc. Second, the neural net learning is meaningless
unless we can provide what to learn. In other words, it is the traditional focus of attention problem
that the external world contains too miich vectors to learn and without a strongly constrained focus
of attention, learning by neural network may never converge. Even if a fast neural network learns
extremely large amounts of long vector to vector matching, learned subsymbolic knowledge lies in
the hidden layer as vector patterns which are inaccessible externally. We would like to integrate the



qeural network as a part of the constraint propagation network instead of having it as a separate
module that performs simple signal processing and pattern discrimination. We will be reviewing
our scheme for this purpose in the first subsection. Another obstacle in integrating symbolism and
subsymbolism is that of parallelism. Symbolic constraints require medium to large grain processing
and are not postulatable using 2 fully distributed fine grain parallel architecture (i.e., standard PDP
architecture). On the other hand, neural-net learning requires a fully distributed PDP architecture
and granularity of parallelism is very fine. We will be reviewing our scheme for dealing with this

problem in the second subsection.

5.1. Our Scheme for Neural-Net/Symbolic Net Integration: Participation of
Recurrent Net

We would like to have the subsymbolic learning module assume the role of providing contextually
sensitive recognition and priming based on the actual input data (i.e., dialogs in terms of natural
language systems). Since this requires the introduction of time differentiation, we have adopted
Flman’s recurrent neural network ([Elman, 1088)) as the base of our neural network. We have been

‘perimenting with different modifications of the recurrent network modifying them to predict
aifferent time spans into the future (t+n) and to receive hidden layer activity from different time
spans from the past (t-n)ﬁ. For example, the model that predicts t+1 and t+2, which is currently
adopted for MONA-LISA, looks as provided in the Figure 1. In order to attain interaction with the
symbolic GCPN, we introduced explicit encoding (and decoding) of constraint graphs into vectors.
By encoding the graphs into vectors and decoding them, Jearning by the recurrent network can be
accessible directly from the output layer, whereas if we simply provide token vectors for unencoded
surface strings, the result of learning has to be extracted from the hidden layer (by methods such

as hidden cluster analysis).

5.1.1. Encoding CPN Constraints: Syntax

Fach lexical entry in our system is encoded as a 45 position vector, where each position is filled
by either a 1 or a 0. The first 20 positions contain syntactic (head-feature) information while the
rest represent semantics. The head-features of a word determine many of the syntactic properties
of the phrase which is headed by that word ([Jaclcendoff, 1977)). The specific constraint features
sncoded in our lexical entries are based on those postulated in the HPSG ([Pollard and Sag, 1987])
and are specified in the propagated graphs in the GCPN. The first six vector positions represent its
the activated lexical node’s major category’ (MAJ for major) which may be one of the following:
Noun (N), Verb (V), Adjective (A), Preposition (P), Determiner (D), and Adverb (ADV). The
next seven vector positions of each lexical entry represent its form (FORM). The possible values
of FORM vary depending on the word’s major (MAJ) category. Thus, a verb may have one of
the following seven forms: Finite or tensed (FIN), Base (BSE), Past Participle (PSP), Present
Participle (PRP), Passive (PAS), Infinitival (INF), and Gerundive (GER). For nouns, on the other
hand, we distinguish five different forms: the expletive pronoun there® (THERE), the expletive

6 A report on the experiments on different configurations of the recurrent network is forthcoming as our technical

report.
TThe major categories correspond to the notion of part-of-speech.
8For example, as in existential constructions such as There is a moon out tonight. (Examples here are from

[Pollard and Sag, 1987].)

T e A rn AL ed e a3k ety ese SE L Y
TSR T A :

RS

T T et e
7 P R AT NS




!
i
f
;
]
i
!
i
1

pronoun it of extraposition® and pseudocleft10 constructions (IT), non-reflexive pronouns (PRO),
reflexive pronouns'(ANA), and all other nouns (N ORM). There are as many preposition forms
as there are prepositions. The same holds for determiners. In our current implementation (due
to econOmy Ieasons), we distinguish the six most frequently used prepositions, while all other
prepositions are encodes as ‘other’. The same holds for determiners. The head-features encoded in
the remaining 7 syntactic positions are different for each grammatical category. Thus for exambple,
a 1 occupying the 14th vector position indicates in the case of a noun that its case is Nominative
.(NOM)“, in the case of a verb that it is an Auxiliary verb (AUX—}—)”, and in the case of an

adjective or a preposition that it is Predicative (PRD+)13.

The 20'—un‘it representation of the head-feature information associated with verbs is:
#(NVAPD ADV TIN BSE BSP PRP PAS INF GER AUX+ INV+H 1ST 2ND 3RD SNG

PLU ) and that of nouns is:
#(NVAPD ADV THERE IT NORM PRO ANA __ NOM ACC 18T 2ND 3RD SNG PLU

For example, with our encoding scheme, the syntactic part of the lexical vector for the word
altends is as shown below*:

4010000 01000000 00 001 10).

The first 6 units indicate that its Major category is V, the next 7 units indicate that its V

FORM is BSE, and the rest indicating that it is AUX- and INV-15, and that its agreement values

are: 3rd person, singularls.

5.1.2. Encoding CPN Constraints: Inheritance Hierarchy

The latter half of the lexical vectors represent the semantics of the lexical-entry in terms of its
location in the conceptual inheritance hierarchy. The inheritance hierarchy is represented by groups
of units (vectors) representing the branching from the previous layer to the next layer. Currently
we have 5 groups of 5 units each representing one level of abstraction In the inheritance hierarchy.
The location of a unit whose value is 1 represents the branching for the next layer. For example, a
simplified part of our inheritance hierarchy looks as shown below (descending levels of abstractions

from left to right):

1st level 2nd level 3rd level 4th level 5th level
Object Physical-Object Animate-Object Person Male-Person

Inanimate-Obj Natural-Subst Stones

9For example, as in it bothers me that he resigned.

10For example, as in it’s bagels that I want.

131y English, only pronouns exhibit overt case marking differences; €.8., he (Nominative) versus him (Accusative).

12gych as the Auxiliary verb will in John will come.

13For example, the adjective ajor in The door was ajar and the prepositional phrase with the preposition on in
Feliz is on the oak library table.

14\e will be using #( - ) instead of [ ... ] to represent vector to be consistent with our sample outputs.

15This feature is necessary to distimguish auxiliary verbs that invert {most of them do) from those that do mot,
such as the verb better as in You better stay here (see [Pollard and Sag, 1987)).

18 Gender information is not encoded as a syntactic head-feature because it would be redundant in the case of
English since English is a natural gender language and gender information is encoded in the semantics portion of the

vector.



Artificial-Subst Document

Mental-Object Theory&Rule ...

Abstract-Tool Language English
: : Japanese
Social-Object ...
Phenomenon Physical-phenomenon ...
Attribute ...
Force ....

From the highest level to the 5th level, each level has 5 categories and therefore, about 3,000
concepts (5°) are representable with 25 units. For example, the semantic part of the lexical-vector

for Japanese would be: .
#(10000 01000 01000 10000 0100 0); the value 1 indicating the branching for

the next level down (left to right).

5.1.3. Decoding the Encoded Vector

We apply the following rules to decoded the output. (output layer vector) of the recurrent net

forward propagation:

Lexical-Vector Decoding Rule

¢ Apply predetermined threshold (currently 0.8 in our system) to the output levels of
each vector position.

e Decode syntactic part from left to right. If Major category is ambiguous (ie.,
more than one unit is over the threshold in the first six positions, or none are above the
threshold), then syntax is ambiguous. If Major category is unambiguous, decode
other head-features by checking the vector position for each feature.

o Decode the semantic part from left to right level by level. If the output is
ambiguous (more than one or none above the threshold) at any level, stop decoding

immediately.

This left to right decoding of the syntax and semantics vector guarantees that the decoding
always returns its most unambiguous hypothesis for each output configuration. For example, if
the output after applying the specific threshold is: #(1 00100 001000 00 00 000
00 10000 10000 01000 01000 100 10) we decode the syntactic part to
be ambiguous, because the first six units indicate that it can be either a Noun or a Preposition
(because of previous words, that next word can be hypothesized to be either N or P). The semantic
part is decoded as Artificial-Substance, because we can decode from left to right as Object, Physical-
Object, Inanimate-Object, Artificial Substance climbing down the abstraction hierarchy; however,
one more level down, it is now ambiguous between Document and something else. Therefore, our
decoding stops at Artificial-Substance.
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5.1.4. Recurrent Net Priming

In the MONA-LISA system, some nodes that are one to two levels higher than the lexical-nodes in
the abstraction hierarchy are designated as ‘contextual interaction nodes’ which send and receive
activations to/from the recurrent network. We have trained the recurrent network by supplying
actual dialog sample sentences into the system. We have 12 dialogs of telephone conversations in the
domain of international conference registration prepared based on actual telephone conversations.
Fach sentence is 10 to 15 words long and each dialog contains 10 to 20 sentences. We treated one
dialog as one epoch and a training set consisted of 3 sets of 12 dialogs ordered pseudo randomly.
During the sentential activations, when a particular lexical node is activated and the activation is
passed upward by propagating constraint graphs, if the ‘contextual interaction nodes’ are activated,
then head features!’ and inheritance information of the constraint graphs are encoded into vectors
and are supplied to the recurrent network. A forward propagation is performed (followed by
backpropagation if it is a part of a training session) and the output vector is decoded and fed back
to the constraint propagatioh network. This activation from the recurrent network is used as reverse
costs in the GCPN to be used in subsequent disambiguations at different levels of abstractions.
In one experiemt, when the current sentence was [ would like!® to register for the conference,
when 1o is input the next inheritance class concept *register was actually predicted along with the
correct syntactic feature prediction for ((MAJ V) (FORM BSE)). This way the prediction from the
recurrent network may be strongly specialized when the activation pattern in the training data is
specialized. When we retrained the same network with sentences that included [ would like to but
with many other verbs after to the network either predicted the concepts that are higher in the
abstraction or did not predict anything at all. Since our inheritance decoding is from left to right
(higher in abstraction to lower), in effect, some inductive generalization is attained by training
with a different variety of sentences. Also, when the sentential activation patterns are specialized,
the recurrent network fine tunes to the provided patterns and the predictions may be strongly
specialized. The impact of this is that the recurrent network priming mechanism can be utilized
in fine-tuning the system’s performance based on the actual usage patterns when the system is
finally installed for some specific applications. By running the backpropagation while actually
using the system, the system is capable of tuning to the actual sentential patterns used at the
specific site. Also, as already demonstrated by [Elman, 1988] the recurrent network successfully
learns syntax. The implication of this should be significant especially considering the fact that
past natural Janguage systems always @ priori provided context-free grammars (perhaps, partially
notivated by the fact that syntactic knowledge is believed to be innate).

6. Discussion:

We have seen in the previous sections that our model is capable of taking advantage of constraints
that are postulated in modern cognitive theories by fully supporting arbitrary graphs to be used
as constraints in the network. In fact our current sample implementation {for natural language uses
HPSG which is represented by path equations (which are automatically converted to a directed
subsumption-ordering graphs'?) that are no different from the grammar that we are using for the

17\We do not vectorize all graph structures simply of economy reasons because recurrent net training takes large
amount of time. >

18 Would like is treated as one unit when recurrent network is activated.

19y bsumption ordering is an assumed condition for the graph-based representation in the unification-based gram-
mar formalisms. Simply put, the information content represented by the directed graph node which is closer to the



unification-based parsers. Although not discussed in this paper, treatment of phenomena such as
Jong-distance dependency is straightforward in our model (no different from the way it is handled
in the unification-based grammar systems). This shows the exisiting theories of cognition can
directly be represented and manipulated in our architecture. This is a clear contrast to the past
models of massively-parallel processing that symbolic and principled representation of constraints
were difficult due to the distributed nature of processing. Also note that the architecture supports
integration of the neural net PDP processing. This makes the symbolic constraints with the full
capacity to capture cognitive theoretical postulations to be cooperating with the fully distributed
representation and learning based upon the actual input. In other words, the a priori provided
knowledge about the world (i.e., symbolic constraints) can help attain focus of attention during
the a posteriori learning in the neural network based upon the actual input to the system. This
cooperation is both ways as we have seen in the capacity of the recurrent network to provide strong
contextual predictions to the symbolic constraint propagation network that can be used by the
symbolic network to help its disambiguation and other inferential capacities. A practical advantage
of this architecture aside from the theoretical ones is that the capacity to perform learning based
upon the actual input while taking advantage of the symbolic existing knowledge would mean that
the system will perform better as we use the system more. It is because the subsymbolic learning
can be performed during the actual usage and the architecture can fine-tune its performance based
upon the particular usage patterns of the end users. In other words, the more we use, the better

the systern performs.

Another important advantage of our model is that the singularity of the control structure and the
uniformity of the processing are maintained. Past attempts to enhance spreading activation marker
passing recognition to handle symbolic and configurational constraints either inevitably involved
introduction of arbitrary functional applications to handle configurationality (such as [Tomabechi
and Levin, 1989]) or required a separate control structure to handle configurational constraints
(such as [Norvig, 1989] and {Hendler, 1989)). In the graph-based constraint propagation network,
the control structure is the propagation of constraint graphs which is uniform.

7. Conclusion

The MONA-LISA architecture assumes multimodal input/output activity and aims at receiving
input activations from the neural network into the symbolic massively-parallel network. For exam-
ple, we could design a visual neural network connected to GCPN so that whenever the visual neural
network recognizes particular input it can enhance activity in the other modal channels. The recog-
nition from different modal channels could prime the same instance in the memory network so that
the activities in different modal areas can enhance or inhibit constraint processing activities based
upon activations in other areas. Typically, when a visual information can help disambiguation
activity in the linguistic activity, the architecture will support a very strong pragmatic information
processing in the GCPN. The interaction within GCPN and with the contextual recognition recur-
rent neural network is performed in terms of propagating constraints that are provided as graphs
or converted from vectors to graphs. The activation in the GCPN is only propagated upward in
the inheritance hierarchy and never horizontally. Since the increase in the constraints takes place
horizontally, the complexity increase can be countered by an increase in the number of processing
units. Ay

R —

root of the graph subsumes the information content of the nodes further from the root in the same graph.




Finally, there is one underlying implication of connecting subsymbolic processing with a sym-
bolic one. It is the implication that we are connecting the physical signal recognition activity
effectively with more conceptual symbolic inferencing activity. In other words, attaining the inte-
grated subsymbolic/symbolic processing DY connecting symbolism with subsymbolism should
mean that we have one model that proposes 2 scheme to connect the activities in physical world
with the activity in the abstract world (or the external world with the mental world).

Implementation

The MONA-LISA architecture assumes massively-parallel processing with a mixture of varying
levels of granularity of parallelism from fine to medium grain. For example, constraint processing
of graph unification is fine o medium grain; however, processing of the recurrent neural net and
the speech recognition neural-net are of fine grain. Also, since the constraint graphs are allowed to
point to any location in the memory-network, tlie hardware needs t0 support the parallel processes
to access any location in & shared memory with least overhead. Currently no massively-parallel
hardware designs (such as CM-2 [Thinking Machines Corp., 1989], SNAP [Lee and Moldovan,
1990], IXM2 [Higuchi, et ab 1991]) supports this kind of massively-parallel processing in which
processing granularity is strictly limited to fine grain?® and memory is fully distributed. We have
implemented our demo system on & Sequent/Symmetry shared-memory parallel machine with 16
CPUs by simulating massive-parallelism by taking advantage of micro-tasking parallelism using
light-weight processes. Qur current implementation may set a good precedent for demonstrating
a simulated massive-parallelism of hybrid granularity using a closely-coupled shared memory par-
allel architecture.?? The main technological bottleneck in actually designing a massively-parallel
hardware that directly supports MONA-LISA architecture lies in the solution of so called Hillis
bottleneck. This is the problem of the limitation of capacity to send large amount of data quickly
between distributed processing units in the massively-parallel architecture. Due to this problem,
for the next decade or SO, MONA-LISA architecture may be only suitable to be run based upon

‘a simulated massive-parallelism on 2 limited parallelism shared memory parallel hardware (for

example upto 256 CPUs or $0).

——

20 Py cept for the transputer support of IXM?2

21The problem of varying granularity of parallelism, depending on different types of constraints in the network is
countered in my current implementation by inserting intermediate 1ight-weight processes t0 handle different levels of
parallelism. Namely, T have divided parallel processing into three levels:

s Node level: this is the level where nodes receive and fire activations, i.e. the representational level of
memory nodes. In the past models of massively-parallel artificial intelligence, this was assumed to be the level

of processing as well.

o Light weight process (lwp) level: this is the level at which massively parallel processing is performed.
Any number of lwps may be created during processing, independently of the number of nodes and the number

of processing units.

o Processing unit level: this is the level of actual processing hardware. Any number of processors may be
configured depending on ihe hardware architecture. One (or more) processing units may be dedicated to the

scheduling of Twps.
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