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Abstract

We describe a model of natural language processing based on the notion of propagating
constraints in a memory network. This model contains a massively-parallel memory-network
in which constraint graphs that represent syntactic and other constraints that are associated
with the nodes that triggered activations are propagated. The propagated constraint graphs
of complement nodes that collide with the constraint graphs postulated by the head nodes
are unified to perform constraint applications. This mechanism handles linguistic phenomena
problematic to existing memory-based systems (such as case, agreement, binding and control)
in a principled manner in effect equivalent to the manner that they are handled in the modern
linguistic theories while retaining the advantages of massively parallel memory-based recognition
of input.
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1. Constraint Propagation in the Memory Network

We propose the model of massively-parallel natural language processing based upon the propagation
of graph represented constraints. The central notion of the proposed model is the propagation
of constraints in the semantic memory network. This is in contrast to past models of semantic
memory-based natural language recognition in which activations and pointers to sources of activa-
tions (i.e., markers) are propagated in the memory network. Instead of propagating markings on
memory nodes, we explicitly propagate constraints. As a representational scheme for capturing con-
straints to be propagated, we find directed graphs to be appropriate. It is because their expressivity
has been well supported by linguists ([Bresnan and Kaplan, 1982, [Pollard and Sag, 1987], etc.)
and the operations on them (i.e., graph unification) have been extensively researched!. We call the
model of massively-parallel memory extended with the capacity to propagated graphs Graph-based
Constraint Propagation Network (GCPN). While retaining the semantic (and pragmatic) expressiv-
ity of memory-based schemes, the syntactic expressivity of the graph-based constraint propagation
scheme is significantly greater than that of traditional memory-based schemes and their extensions.
In fact as we mentioned above, a significant number of current linguistic theories are based upon
the formulations of constraints based upon feature-structures and unification operations on them
(such as FUG [Kay, 1984], HPSG [Pollard and Sag, 1987] and LFG [Bresnan and Kaplan, 1982}),
which are captured through directed graph representations and graph-unification operations on
them. Below is a sample lexicon from our experimental system called MONA-LISA ([Tomabechi,
ms]). We have adopted HPSG ([Pollard and Sag, 1987]) as the basis of providing the linguistic
constraints to the system as graphs. Constraints are specified using path equations (similar to the
PATR-II notation, [Shieber, et al, 1983]).

(def-frame *JOHN
(inherits-from *MALE-PERSON)
(type :lex-comp)
(spelling  John)
(synsem
(def-path
(<0 loc cat head maj> == n)
(<0 loc cat marking> == unmarked)
(<0 loc cont para index> == [[per 3rd]
[num sng]
[gend mascll)
(<0 loc cont restr reln> == *JOHN)
(<0 loc context backgr> == [[reln raming]
[name JOEN]])
(<0 loc context backgr bearer> == <0 loc cont para index>)
(<0 mem> == <0 loc cont para index idemn>))))

When this lexical definition is read into the system, the path equations are converted into graphs
internally. Below is the sample lexical node definition for the object control verb persuaded:

(def-frame *PERSUADED
(inherits-from *PERSUADE-ACTION)
(type :lex-head)

(spelling persuaded)
(synsem
(def-path
(<0 loc cat head> == [[maj v]
[vform inf]

1Such as [Pereira, 1985], [Karttunen and Kay, 1985], [Karttunen, 1986], [Kasper, 1987], [Wroblewski, 1987,
[Godden, 1990], [Kogure, 1990], [Tomabechi, 1991].



[aux +]

[inv -]

[prd -11)
(<0 loc cat marking> == unmarked)
(<0 loc cat subcat 1> == <1>)
(<0 loc cat subcat 2> == <2>)
(<0 loc cat subcat 3> == <3>)
(<1 loc cat head maj> == n)
(<1 loc cat head case> == nom)
(<1 loc cont restr reln> == *person)
(<0 loc cont agent> == <1 loc cont para index>)
(<0 loc cont persuadee> == <2 loc cont para index>)
(<0 loc cont persuadee> == <0 loc cont circumstance agent>) ;;; obj control
(<2 loc cat head maj> == n)
(<2 loc cat head case> == acc)
(<2 loc cont restr reln> == *person)
(<3 loc cat head maj> == v)
(<3 loc cat head vform> == inf)
(<3 loc cat head aux> == +)
(<3 loc cat subcat 1 loc cat head> == [[maj n]

[case noml])

(<3 loc cat subcat 2 loc cat head> == saturated) ;;; must not unify
(<3 loc cat subcat 3 loc cat head> == saturated) ;;; must not unify
(<0 loc cont circumstance> == <3 loc cont>)
(<0 loc cont relmn> == *PERSUADE-ACTION)
(<3 loc cont restr reln> == <3 loc cont reln>)
(<3 loc cont restr reln> == *action))))

Thus the two equations:

({ 0 loc cont persuadee ) == ( 2 loc cont para index })
({ 0 loc cont persuadee ) == ( 0 loc cont circumstance agent })

can easily specify the control constraints lexically in the network.

2. The Graph Propagation Recognition Activity

Currently, our graph-based constraint propagation inheritance network has 5 types of nodes:
conceptual-class nodes, lexical-head nodes, lexical-complement nodes, memory-instance nodes, and
phonological-activity nodes. The conceptual-class nodes are nodes in the high levels of abstrac-
tion and are used for discourse and episodic recognition. Lexical-head nodes are nodes that are
phonologically invoked with lexical activations and they package the complement nodes. Lexical-
complement nodes are the nodes that are lexically invoked and do not have their own complements.
Memory-instance nodes are actual instances of lexical-heads and lexical-complements that are spe-
cific to the current utterance. Phonological-activity nodes are the nodes that represent phonemic
units and are connected to the phonemic recognition modules. The activity of phonological-activity
nodes is not discussed in this paper and the input is assumed to be already hypothesized as words
(Please refer to [Tomabechi and Tomita, 1989] and [Kitano, 1990] for activities of those nodes).

Below is the central part of our sentential recognition algorithm for word level input.

function sentential-recognize (input-stream)



create-process (recognize-lexical (input-stream));
invoke-~global-incidents;
for all NODE in DecayingLayer do

print-node NODE;

function recognize-lexical (input-stream)
reset activities in Activation Layer and Decaying Layer
for word~hypothesis in input-stream do

create-process (activate-lex-node (word-hypothesis));
invoke-global~incidents;

function activate-lex-node (word-hypothesis)
create instance of word-hypothesis
and make a copy of constraint graph with addition of an ‘mem’
arc pointing to the created instance;
if the node type is lexical-complement
then propagate copied (and modified) constraint graph upward;

function invoke-global-incidents ()
for head-instance in ActivationLayer do
create-process (grab-subcats (head-instance)) ;

function grab-subcats (head-instance)
for arcs specified in subcat graph (i.e, <0 loc cat subcat>) do
if conceptual restriction node exists
(i.e, <loc cont rest reln> has value)
and if that node has received the constraint graph propagation
then unify the subcat graph with the propagated graph
if unify succeeds and obliqueness order is met
then store result destructively in head-instance;
propagate synsem graph upward;

Originally, the GCPN is configured hierarchically in terms of conceptual inheritance. Graph
propagation occurs only upward in the inheritance hierarchy and never horizontally. Conceptual
relations (other than inheritance) between lexical nodes are specified through constraint graphs (as
seen in the sample entry in the previous section). For example, Figure 1 is the part of the GCPN
that participates in the sentential recognition of the input John persuaded Mary to give Sandy
sushi which encompasses two control relations (i.e., persuaded object controls Mary and to subject
controls Mary).

3. Discussion:

The so called ‘direct memory access’ (or memory-based) paradigm of natural language recogni-
tion seems to have established itself as an important approach to natural language. Originated
by Quillian ([Quillian, 1969]), this model of natural language processing views natural language
understanding as the activity of identifying the input utterance with existing memory structures.
While these memory structures have taken various forms depending upon underlying theoretical
approaches (such as MOPs of [Riesbeck and Martin, 1985] and Cases in [Martin, 1989]) and upon
levels commitments to the massively-parallel processing assumption (such as the weak assumption
in [Riesbeck and Martin, 1985] and the strong assumption in [Waltz and Pollack, 1985]), the under-
lying control structure has remained the same, namely, spreading activation and marker passing.
The advantage of this control structure is that since spreading activation takes place directly in



*action will be activated by the recognition of any subclass of *action including *run-action,
*sleep-action, etc.. However, there is no way to ensure that if the *mtrans-word is said, the
set of entities that caused the activation of *action contain (be headed by) a finite verb (unless
we create a possibly infinite number of concepts for different combinations of syntactic features
such as *finite-form-running-action-taking-nominative-subject). Thus, it is essentially im-
possible to capture the grammaticality of John said Mary runs and the ungrammaticality of John
said Mary run (or John said Mary to run) within the constraints capturable inside the semantic
memory network. By the same token handling methodology is the so called obligatory control
phenomenon (such as persuade) has been a problem in the past massively-parallel models. In our
proposed model, none of these phenonema poses any problem due to the expressivity of graph-
based constraint formulations. Structured constraints such as binding and control can be handled
through graph-based constraint application (i.e., graph-unification) no different from the way these
constraints are handled in the unification-based grammars. Dynamic assigniment of structures is
not a problem since graphs can buildup intermediate structures (i.e., constituent structures) dur-
ing massively-parallel recognition so that constraints such as dynamic assignment of cases based
upon particular syntactic constructions can be handled within the graph-based massively-parallel
constraint processing framework.

4. Conclusion

The paradigm of natural language recognition based upon the direct recognition in a semantic
memory has been appealing from different view points. These included the appeal from the cogni-
tive view-points as well as the phenomenological ones (especially the assumed massive-parallelism).
The practical appeal of the paradigm viewed as a parsing architecture has been strong as well due
to its strength in handling contextually sensitive inputs. However, one significant weakness of this
paradigm has been its lack of capacity to handle syntactic constraints in a manner that is consistent
with the rest of the memory structure. Linguistic and psychological communities have long accepted
the significance of syntactic constraints as playing an important role in many types of linguistic
phenomena. On the other hand, with few exceptions, syntactic constraints have been either ig-
nored or handled in an ad hoc manner (such as requiring a triggering of arbitrary prestored daemons
that handle particular constraints). In our model, syntactic phenomena problematic to existing
memory-based models such as case, agreement, control, binding, and long-distance dependency can
be handled in a generalized manner most straightforwardly as formulated by the modern linguistic
theories based upon feature structures and unification. Because no separate (and essentially serial)
control structure is required for handling syntax, uniformity of processing is maintained coherent
to the underlying massively-parallel processing hypothesis of the memory-based architectures so
that advantage of such processing as demonstrated by [Waltz, 1990] will not be sacrificed. This
means the GCPN scheme can be adopted by (or the GCPN can integrate) the existing spreading
activation and marker passing models such as [Hendler, 1989] and [Norvig, 1989] to provide these
models with strong syntactic processing capability without sacrificing the massively-parallel nature
of their processing (by not relying on a separate serial module for syntactic parsing). With the ex-
pressivity of our model in capturing the syntactic constraints as postulated in the modern linguistic
theories that is integrated to a spreading activation memory-based natural language recognition in
a principled manner, our model seems viable as either an independent paradigm of natural language
recognition or as a scheme to enhance the existing models of massively-parallel natural language
processing, inference and planning.



Implementation

The architecture assumes massively-parallel processing with a mixture of varying levels of granu-
larity of parallelism from fine to medium grain. Also, since the constraint graphs are allowed to
point to any location in the memory-network, the hardware needs to support the parallel processes
to access any location in a shared memory with least overhead. Currently no massively-parallel
hardware designs (such as [Thinking Machines Corp., 1989], [Lee and Moldovan, 1990], [Higuchi,
et al, 1991]) seem to support this kind of massively-parallel processing directly (- these machines
assume processing granularity to be strictly fine grain® and memory is normally fully distributed).
We have implemented our demo system on a Sequent/Symmetry shared-memory parallel machine
with 16 CPUs by simulating massive-parallelism by taking advantage of micro-tasking parallelism
using light-weight processes.
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