A Soft Unification Method
for Robust Parsing

Hideto Tomabechi

Tokushima University
Dept. of Information Science and Intelligent Systems
Minami-Josanjima, Tokushima 770 JAPAN
tomabech@is.tokushima-u.ac.jp tomabech+@cs.cmu.edu

Abstract

Given natural language input is not guaranteed to be well-formed as
specified in the grammar, robust natural language systems would need
a flexible method for handling illformed input. Otherwise, the systems
would simply reject the input sentence altogether even if the ungram-
maticality in the input is trivial. This ability to handle illformed input
is essential especially with noisy speech input. This paper proposes a
methodology to enhance robustness through an enhancement in unifi-
cation algorithm. The robust unification is achieved through partially
delaying the evaluations of some of the graph paths. The paths that are
delayed are: 1) paths exceeding the depths of predetermined thresh-
olds; 2) paths containing the predetermined labels. In both variations,
delayed unifications will be forced after a complete parse. If they sim-
ply succeed, then the sentence was simply well-formed. If they fail, it
means the input was illformed. The parser can either report the point
of failure to the human user so that the user can intervene and examine
the location of illformedness for further processing, or the parser can
call other modules (such as semantic inference modules) for further
automatic processing.



1 Motivation

Given practical natural language input is not guaranteed to be well-formed
as specified in the grammar prepared in the NL systems, the NL systems
need to be enhanced through methodologies for handling illformed input.
Otherwise, the systems would simply reject the input sentence altogether
even if the ungrammaticality in the system is trivial. This problem is
strongly felt when a natural language system uses so called “unification-
based grammar” for constraint postulation. It is because in these systems,
if there is any failure at any depth of feature-structure graphs, the whole
unification fails and hence the parse candidate is immediately rejected. The
solution to this problem is essential especially with spoken language input
since 1) speech recognition may not be accurate and 2) the spoken language
itself is often ungrammatical.
Consider the simple example augmented CFG grammar:

S ==> VP
(x0 sem) == (x1 sem)

VP ==>NVN
(x1 agr) == (x2 agr)

(x0 sem relation) == (x2 sem)
(x0 sem argl) == (x1 sem)
(x0 sem arg2) == (x3 sem)

vV --> "study"
(x0 agr num) == plural
(x0 sem) == *STUDY

V --> "studies"
(x0 agr num) == singular
(x0 sem) == *STUDY

N --> "John"
(x0 agr num) == singular

(x0 sem) == *JOHN

N --> "Lisp"



(x0 sem) == *[ISP

With the grammar above, John studies Lisp is grammatical and John
study Lisp is not. In the spoken language situation, the last phoneme s may
be unrecognized (due to inaccuracy of the recognition device or due to weak
pronunciation), and therefore unless a spoken-input NL system adopts some
kind of error recovery scheme, the correct input John studies Lisp may be
recognized as John study Lisp and the sentence will be rejected altogether.

In the currently adopted schemes of unification-based context-free pars-
ing!, a context-free rule is accompanied with so called “augmentation” which
is a group of feature path equations (which are converted to graphs). Graph
unifications are used to determine the validity of accepting the rule based on
the augmentation and if the unification fails then the rule is rejected. Thus,
by definition, one obvious observation we can make about unification-based
grammar is that:

The input is rejected when unification-fails.

In other words, if we want to make a natural language systems to accept
illformed input, our options are rather limited. At least two methods have
been proposed to do this. namely:

1) To fool the grammar by making illformed input well-formed
— unifications will naturally succeed since the input is transformed
into a grammatical one.

One method proposed at CMU during 1988 ([Saito and Tomita, 1988])
was by introducing the confusion matrix and trying every possible comple-
tion of the rules by supplying possibly confused phonemes (with weights
based upon phonemic closeness distance). This scheme fits nicely with
Tomita’s LR parsing algorithm; however, one problem with this scheme
is that since we are essentially considering every possible alterations of
phonemes the parser generally over-generates and when a grammar is suf-
ficiently large, the ambiguity of the sentences may become massive. For
example, [Tomabechi and Tomita, 1988] reported over 100 ambiguities for a
parse of a short sentence atamagaitas (‘I have a headache’) using the scheme.

1Such as in [Tomita and Carbonell, 1987], [Morimoto, ¢ al, 1990].



2) To combine partially created structures by using separate
mechanisms — results of successful unifications are combined to
create a meaningful larger constituent.

For example, [Kirtner and Lytinen, 1991] suggests a scheme to combine
pieces of partially created feature structures using semantic knowledge. This
method seems generally adoptable in unification-based grammar processing
since in many cases a parse of a sentence would have created many rather
large partial constituents before detecting an ungrammaticality and failing
before creating an S. Of course if unifications did not create sufficient enough
constituents to create a meaningful larger constituent this scheme will not
work. In both Saito and Tomita and Kirtner and Lytinen, improvements
are made to the parsing methodologies. Another possibility is to improve
unification algorithms. Our observation about parsing failure was that “a
rule is rejected when unification-fails”, thus by making unification successul
with illformed input, we can in effect create a robust parsing system. Thus,
our third option which we are proposing in this paper is below:

3) To make unification less strict to process illformed input.

2 Owur Scheme

Our principle for modifying graph unification to process illformed input is
as follows:

e Partially delay evaluations of graph paths.

e Perform delayed unifications after the parse.

In order to delay evaluations of some of the paths, our method has two
options:

o Delay evaluation of graph path exceeding a predetermined
threshold depth.

¢ Delay evaluation of graph path with predetermined labels.

In the first method, we provide a predetermined depth of paths, and
any unification after that depth is delayed until after the parse. With the



subsumption order assumption of constraints postulated in directed graph
paths, a constraint is considered more specific if the paths leading to the
constraint is longer. Thus, by delaying the evaluation of long paths, we
are essentially ignoring the application of very specific constraints during
parsing. In the second method, we designate certain path such as ‘syntax
head agreement’ so that during a parse, these features are ignored (i.e.,
unifications of feature-structures for ‘agreement’ is delayed).

In both methods, delayed unifications will be forced after a complete
parse. If they succeed, then the sentence was simply well-formed. If they
fail, it means the input was illformed. The parser can report the point of
failure to the user so that the user can intervene and examine the location
of illformedness for further processing. Also, possibly, the parser can call
other modules such as proposed by Kirtner and Lytinen and perform remedy
measures.

3 Algorithm

Below is the algorithm description for the delayed failure detection. The
algorithm is based on Quasi-Destructive Graph Unification ([Tomabechi,
1991] abd [Tomabechi, 1993]); however, the method should be adoptable to
other graph unification algorithms?

The function unify1 assumes the top-level functions unify-dg and unify0.
Also dereference functions and quasi-destructive copying functions are needed.
The descriptions of these functions are provided in [Tomabechi, 1993].

Function unifyl(dgl-underef,dg2-underef)
dgl <-- dereference-dg(dgi-underef);
dg2 <-- dereference-dg(dg2-underef);
IF (dgi == dg2) THEN

return(*T);

ELSE IF (dgl.type == :bottom) THEN
forward-dg(dgl,dg2, :temporary);
return(*Tx);

ELSE IF (dg2.type == :bottom) THEN
forward-dg(dg2,dgl, :temporary);
return (*T*) ;

ELSE IF (either or both dgl,dg2 or their copies are delayed

objects) THEN
Further delay evaluations.

2Such as [Emele, 1991}, [Karttunen, 1986), [Kogure, 1990], [Wroblewski, 1987].



ELSE IF (dgl.type == :atomic AND dg2.type == :atomic) THEN
IF (dgl.arc-list == dg2.arc-list) THEN
forward-dg(dg2,dgl, :temporary);
return (*T*);
ELSE throw with keyword ’unify-fail;
ELSE IF (dgl.type == :atomic OR dg2.type == :atomic) THEN
throw with keyword ’unify-fail;
ELSE shared <-- intersectarcs(dgi,dg2);
FOR EACH arc IN shared DO
IF eval-feature-query(arc) returns *T* THEN
dgl.copy <--
delay(unifyi(dest of the shared arc for dgi,
dest of the shared arc for dg2));
dgl.copy.generation <-- *unify-global-counter#;
ELSE unifyi(dest of the shared arc for dgi,
dest of the shared arc for dg2);
forward-dg(dg2,dgl, : temporary);
new <-- complementarcs(dg2,dgl);
IF (dgl.comp-arc-list is non-empty) THEN
IF (dgl.generation == #unify-global-counter*) THEN
FOR EACH arc IN new DO
push arc to dgl. comp-arc-list;
ELSE dgl.comp-arc-list <-- nil;
ELSE dgl.generation <-- *unify-global-counterx;
dg.comp-arc-list <-- new;
return (*T) ;
END;

Dereference-dg(dg) performs the dereferencing by recursively following
the forwarding pointers (cf. [Pereira, 1985], [Wroblewski, 1987, [Tomabechi,
1991]). Intersectarcs(dgl,dg2) returns the arcs with labels that exist both
in dgl and dg2 (set-intersection). Complementarcs(dg2,dgl) returns the
arcs with labels that exist in dg2 but not in dgl (set-difference). Eval-
feature-query(arc) returns non-nil if the path leading to the arc exceeds the
predetermined depth or the arc has the predetermined label (to be delayed).

4 Discussion:

The advantage of the proposed scheme is that we will not need to consider
all possible completions of the grammar rules which would be required if we
modified the illformed input itself. Also, since the delayed unifications are
performed after the parse, either a user of the system or other module can
determine the validity of a specific forced unification failure. The hypothesis



that would have been lost during a parse due to the unification failure can
be considered at the end of the parse since the unification is delayed until
after the parse. If the failure is determined to be unimportant at the end of
the parse, then the parse can be accepted.

The proposed scheme can also be considered as a method to speed up
unification-based parsing. The speed gain is possible by not spending time
on unimportant features. If we make less violated features to be delayed,
then constraint violations can be detected faster than without delaying. As
demonstrated in [Tomabechi, 1991], efficiency gain can be significant if we
can make unifications detect failures as soon as possible since over 60 percent
of unifications are normally failures during a parse of a typical large scale
grammar. Any activity performed for failed unifications are wastes. By
delaying the evaluation of features with less frequency of failures, we can
essentially accelerate the timing of evaluation for more frequently violated
features. This way, a failure can be found quicker using the delaying method.

In general, delaying some of the unification evaluation until the end of a
parse should speed up the parsing process. It is because by delaying the uni-
fication until the end of the parse, the unnecessary unifications for feature
structures that are eventually rejected by context free grammar rules are
avoided. However, it is important to note that the nature of the proposed
scheme is different from so called ‘lazy unification’ schemes (such as [Emele,
1991], [Godden, 1990}, [Kogure, 1990]). It is because in the ‘lazy unification’
schemes, unification operations are delayed within the same top-level unifi-
cation (in order to avoid so called ‘early copying’). In the proposed scheme
some unifications are delayed until the end of the parse and not just until
the later point within the same top-level unification. The advantage of the
proposed scheme is that we can effectively avoid the combinatorial explo-
sion associated with the schemes such as using confusion matrix to make
input sentences arbitrarily well-formed. For example with John studies Lisp
verses John study Lisp. The schemes that would consider all possible alter-
ations of phonemes (morphemes) would consider missing of ‘s’ after study
as well as considering all other possible phonemic alterations. This clearly
over-generates. In the proposed scheme alterations (and missing/adding) of
phonemes are not directly considered. Instead the feature paths for singu-
lar/plural agreement is delayed until the after the parse. This way, mas-
sive over-generation due to the consideration of all possible alterations of
phonemes can be avoided. It is important to note here that the proposed
scheme does not add new hypothetical inputs (source of combinatorial ex-
plosion), instead it considers the single input many ways by loosening some

6



of the unification-based constraints.

Also, the algorithm is designed as a scheme for unification augmentation
to context-free parsing. In other words, even if the looser application of
unification operations during a parse generates hypothesis that is normally
rejected by the standard unification, if the hypothesis is ill-formed based
on context-free grammar rules, then it is rejected later anyway. Also, the
delayed unifications are forced at the end of the parse. In other words the
constraint applications are not ‘ignored’, it is ‘delayed’. One way to view the
proposed scheme is that it is the method to avoid premature application of
unification constraints that are too strict. By avoiding the premature appli-
cation we can 1) avoid performing unnecessary unifications for hypotheses
that will be rejected later by the context-free parser; 2) some hypothesis
that are rejected altogether during a parse can be considered at the end of
the parse at which point strict unification operations are forced.

5 Conclusion

Our proposal can be summarized as based upon two observations about nat-
ural language parsing using augmented context-free grammar parsing using
graph unification as a method to apply augmentation constraints.

Unification results may be eventually rejected and wasted by
CFG rules.

Early application of strict constraints makes recovery of re-
jected hypothesis difficult.

The first claim is essentially about the efficiency and the second claim
is about the robustness. In a typical CFG-based parsing using unification-
based grammar, many hypotheses produced during a parsing are eventu-
ally rejected by subsequent applications of the context-free grammar rules.
Since the intermediate hypotheses are created (constituents are built-up)
using graph unification operations, the unifications for eventually rejected
hypothesis are wastes. Since unification operations are very expensive, this
can be a significant waste factor. Because standard unifications are strict
regardless of the points in parsing (whether beginning of a sentence or at the
end of the sentence), strictest constraint application with the given grammar
is performed throughout the parsing. At the beginning of the parsing, most



CFG rules are yet to be fired, therefore, there could be a massive amount
of hypotheses most of which are to be eventually rejected. It seems a waste
to perform full unification operations for all of them. Thus, ideally, if we
can make unification application to become gradually stricter as the parse
progresses and more CFG constraints become available, we could effectively
avoid such wastes. In the proposed scheme, we make the unification loose
until the end of the parse and provide the strict application at the end of the
parse. (We may be able to make applications gradually stricter in our future
implementations). At the end of the parse, if we force all the delayed ap-
plication of unification constraints then the parse results would be the same
as the ordinally strict unification-based grammar parsing. Only difference
is that the burden of constraint application would be partially shifted from
unification-operations to CFG parsing. Since parsing operations (such as LR
parsing) are significantly more efficient than graph unification operations,
this would result in more efficient overall parsing with the same results.

When we force the delayed unification after the parse, if a human user
examines the hypothesis that are rejected with the forced strict application,
then there will be a possibility that the hypothesis that is rejected may
be accepted if the user decides that the original rejection was due to the
ill-formedness of the input. Of course, this part may become automatic
using some semantic-based approach as well. In either case, the difference
is that the hypothesis that are lost during a parse (the process for which
are invisible to the user) can be considered at the end of the parse. We
find this an important property if we consider the future application areas
of the unification-based CFG parsing such as spoken language processing.
The modification to the standard unification algorithm for adopting the
proposed scheme should not be difficult. We currently have a version for
quasi-destructive scheme. We hope to report the statistical data using the
proposed scheme during the workshop.

References

[Emele, 1991] Emele, M. “Unification with Lazy Non-Redundant Copying”. In Proceed-
ings of ACL-91, 1991.

[Godden, 1990] Godden, K. “Lazy Unification” In Proceedings of ACL-90, 1990.

[Karttunen, 1986] Karttunen, L. “D-PATR: A Development Environment for Unification-

Based Grammars”. In Proceedings of COLING-86, 1986. (Also, Report CSLI-86-61
Stanford University).

[Kirtner and Lytinen, 1991] Kirtner, H. and S. Lytinen. “ULINK: A Semantics-Driven
Approach to Understanding Ungrammatical Input”,



[Kogure, 1990] Kogure, K. “Strategic Lazy Incremental Copy Graph Unification”. In Pro-
ceedings of COLING-90, 1990.

[Morimoto, et al, 1990] Morimoto, T., H. IIda, A. Kurematsu, K. Shikano, and T. Aizawa.
“Spoken Language Translation: Toward Realizing an Automatic Telephone Interpreta-
tion System”. In Proceedings of InfoJapan 1990, 1990.

[Pereira, 1985] Pereira, F. “A Structure-Sharing Representation for Unification-Based
Grammar Formalisms”. In Proceedings of ACL-85, 1985.

[Saito and Tomita, 1988] Saito, H. and M. Tomita. “Parsing Noisy Sentences”. In Pro-
ceedings of COLING-88, 1988,

[Tomabechi and Tomita, 1988] Tomabechi, H. and M. Tomita “The Integration of
Unification-based Syntax/Semantics and Memory-based Pragmaitics for Real-Time Un-
derstanding of Noisy Continuous Speech Input”. In Proceedings of AAAI88, 1988.

[Tomabechi, 1991] Tomabechi, H. “Quasi-Destructive Graph Unification”. In Proceedings
of ACL-91, 1991.

[Tomabechi, 1992] Tomabechi, H. MONA-LISA: Multimodal Ontological Neural Archi-
tecture for Linguistic Interaction and Scalable Adaptations, Technical Report, ATR
Interpreting Telephony Research Laboratories, 1992.

[Tomabechi, 1993] Tomabechi, H. Efficient Unification for Natural Language, Ph.D. Dis-
sertation, Carnegie Mellon University, 1993.

[Tomita and Carbonell, 1987] Tomita, M. and J. Carbonell. “The Universal Parser Archi-
tecture for Knowledge-Based Machine Translation”. In Proceedings of IJCAI87, 1987.

[Wroblewski, 1987] Wroblewski, D.“Nondestructive Graph Unification”. In Proceedings of
AAAI8T, 1987,



