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SUMMARY Tomita’s parsing method (GLR) is a practical
and successful parsing method for natural language. However,
one difficulty in the GLR is that interleaved constraint processing
of syntax and semantics in paralle] is not trivial during parsing,
because it uses the precompiled table for a fast real-time parsing.
In this paper, we present a method which makes the GLR
adaptable to interleaved parsing while making some limitation
on its generality. For interleaved parsing, the conflicts of the LR
parsing table must be resolved at the parse time. The shift-reduce
confiict among the above conflicts is the most serious one for
interleaved parsing because of the lack of knowledge for the
conflict resolution at the parse time. Therefore, we concentrate
on resolving a shift-reduce conflict by introducing a grammar
which is called a shift-first LR (k) grammar. Our method for
this is that the conflict resolution is delayed by the shift-first
strategy which makes an unconditional choice of shift actions in
the case of a shifi-reduce conflict. Then, a delayed resolution that
resolves the conflict, is made. Depending on the decision of the
resolution, the pseudo parsing, which parses symbols in the LR
parser stack, proceeds. Our experiments showed that our parser
is efficient while attaining the interleaved parsing at real time.
key words: shift-first grammar, shift-first parsing, pseudo pars-
ing, Interleaved parsing

1. Introduction

Currently syntax and semantics are interleaved in
dominant parsing approaches [4]; i.e., semantic analy-
sis is performed at intermediate points during the
parse, thus allowing it to filter out semantically anoma-
lous constituents before syntactic processing is com-
pleted. The purpose of the interleaved parsing is to
make processing more efficient, since semantics prune
those parses with no semantic interpretation before
syntax can be built further on them.

Tomita’s parsing method (GLR) [8], [10] is a
“practical and successful parsing method for natural
- language. However the GLR, defined as a variation on
standard LR parsing [2], has the difficulty that inter-
leaved constraint processing of syntax and semantics in
parallel is not trivial during parsing because it uses the
precompiled table for a fast real time parsing.

Parsing systems attempt to find a parse tree which
best fits the semantic constraints for the sentence to be

parsed. In order to make deterministic parsing by

Manuscript received April 6, 1993.
Manuscript revised February 1, 1994.
T The authors are with the Department of Information
Science & Intelligent Systems, University of Tokushima,
Tokushima-shi, 770 Japan.

using the LR method, we must resolve the conflicts in
the parsing action table of the LR parser. Aho [3]
suggested a deterministic parsing strategy to resolve the
conflicts in the parsing action table of an ambiguous
grammar by using commonly accepted knowledge,
such as precedence rules. He argued that, if disam-
biguating rules are carefully chosen, we can resolve the
parsing action conflicts. Valuable research efforts on
deterministic parsing were made by Shieber [7] and
Pereira [6] in the area of natural language processing.
They resolved the conflicts of the LR parsing table by
methods which are modeled by the preference behavior
of native speakers, producing only one parse tree.
They showed -that ambiguity problems could be
resolved by using only syntactic knowledge, provided
that the coverage of natural language phenomena is
sufficiently small and the required domain knowledge
is trivial.

The GLR overcomes the generality problem of
Shieber but is extremely nondeterministic. The paral-
lel property of the GLR’s graph-structured stack
(GSS) is useful not only for generalization of the
parser, but also for the resolution of the conflicts of the
LR parser. The conflicts in the LR table are classified
into the next two classes: The first is related to syntac-
tic acceptability, which is whether a sentence to be
parsed is syntactically acceptable or not, and the sec-
ond is related to the ambiguity of a sentence. The
conflicts that belong to the first class can be resolved by
parallel analysis, in which the moves that lead to
failure are excluded. However, for the conflicts that
belong to the second class, a strategy for their resolu-
tion must be prepared. The conflicts of the GLR have
the following properties:

a) shift-shift conflict: This conflict is inevitable n
natural language, in which one lexical item could
postulate several different syntactic categories. This
conflict is mainly related to syntactic acceptability and
less to ambiguity of a sentence. The parallel analysis
of the GLR provides a good method for the resolution
of this conflict.

b) reduce-reduce conflict: The resolution of this
conflict is important for deterministic parsing. How-
ever, this conflict can be resolved by Shieber’s method
[7] or by semantic checking method provided enough
semantic constraints are at hand. Moreover, since this
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conflict is also related to syntactic acceptability, not to
ambiguity of a sentence, the parallel analysis of the
GLR is also suitable for the resolution of this conflict
in many cases.
¢) shift-reduce conflict: This conflict is mainly
related to the ambiguity of a sentence in contrast to the
reduce-reduce conflict. Moreover, no knowledge for
the resolution of this conflict is provided at the parse
time. The paraliel analysis of the GLR usually forces
the number of parse trees to increase.

In this paper, we present a method for the resolu-
tion of the conflict problems of the GLR in the parse
time concentrating on the shift-reduce conflict.

2. Shift-first and Pseudo Parsing

In this section, we will suggest a method to resolve
shift-reduce conflicts. We shall use Aho’s [1] conven-
tion to represent various symbols and strings for gram-
matical constraints.

Natural language is highly ambiguous in contrast
to formal language, which is unambiguous. In LR
parsing of natural language, in spite of its high ambi-
guity, there exist constituents which can be parsed
without any conflict. If a strong phrase denotes a
phrase that consists of these constituents, the partial
constituents that belong to a strong phrase can not be
combined with the partial constituents of other strong
phrases to form another strong phrase. For example,
see the next sample sentence:

“I saw a man in the park with a scope.” ()

EL I TSI L T

In (1), if “I”, “saw”, “a man”, “in”, “the park”, and
“with a scope” are all strong phrases, “man in”, “in
the” and “park with” can never become strong phrases.
This property of natural language parsing is valuable
for providing the specific structural configurations. We
want the above property to be used for deterministic
parsing. For this purpose, shift-first parsing is defined
as follows:

Shift-first parsing:

1) When a shift-reduce conflict occurs while parsing,
only shift actions are selected bypassing the reduce
actions, and then the bypassed reduce actions are
tagged to the symbols shifted by the above shift
actions. We will call this shift procedure §-shift, and
the tagged reduce actions a delayed reduction.

2) When a grammar string £ is reduced by the rule A
— B, if the leftmost symbol of 8 has a delayed reduc-
tion, the reduced symbol A is also tagged by the
delayed reduction, i.e., a delayed reduction is propagat-
ed. We will call this propagation &-propagation.

3) When a grammar string 8 is reduced by the rule A
—f, if all the symbols of 5, except its leftmost symbol,
do not contain a delayed reduction, the reduction A
— /[ is unconditionally executed. We will call the
above reduction a pure reduction. If a reduction A— 3

1163

(1)S > NP VP state | det* n* v* prep* § NP PP VP §

0 S10 s12 2
2)VP-> VP PP 1 ace

2 S5 S6 4 3
(3) VP> v* NP 3 S6  R1 7

4 R5 RS RS
(4PP-> prep* NP 5 |si0 s12 8

6 510 S12 9
(5)NP -> NP PP 7 R2 R2

8 R3,86 R3 4
(6) NP -> det* n* 9 |R4 R4 R4,S6 R4 4

10 Sit
(HNP-> n* 11 R6 R6 R6

12 R7 R7 R7

Fig.1 A sample grammar and its LR parsing table,

lookahead
$
° (R4) 4 action : RS

NP v* NP prep* NP PP

0 2 5

8 6
@ : statc M : symbol node (R3)

Fig.2 The first impure reduction.

is not a pure reduction, the decision of whether the
delayed reduction is neglected must be made from the
rightmost symbol which is tagged by a delayed reduc-
tion. We will call the above reduction an impure
reduction.

4) If the choice of a delayed reduction is made in the
case of an impure reduction, the following pseudo
parsing is continued after the reductions related to the
delayed reduction have been done according to the
shift-first parsing method.

Pseudo parsing: When a grammar string in the parser
stack is aXi--X,, pseudo parsing is the LR parsing
strategy to parse the grammar string X;---X, on the
parser stack « as follows:

a) The FIRST terminal of each grammar symbol is
treated as the input terminal of the standard LR parser.
b) In the case of the shift action, if the symbol to be
parsed is a nonterminal, the nonterminal itself is shift-
ed by the J-shift and the next state is determined by the
GOTO table of the standard LR parser, i.e. the next
state =GOTO [current state, nonterminal].

¢) The others follow the shift-first parsing conven-
tions. .

5) the processing of a shift-shift conflict and a reduce-
reduce conflict are the same as in the GLR.

Let us use the following example to illustrate the
details of the shift-first parsing.

For the parse of the sentence (1) by the grammar
(Fig. 1), Fig. 2 shows the parser stack after shift-first
parsing has been done by §-shift and only pure reduc-
tions. The parser encounters an impure reduction, and
a choice is made between the impure reduction R5 (NP
—NP PP) and the delayed reduction R4 (PP— prep*
NP).

Figure 3 shows the stack just after proceeding with
the delayed reductdon (R4). The new stack pointer is
created for the pseudo parsing. Then the pseudo parser
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NP vk NP PP PP FIRST of PP
rep*
0 2 5 8 4 prep
(R3) Pseudo Stack Top action : RS
Fig.3 After the delayed reduction.
NP v NP PP FIRST of PP
rep*
o 2 5 8 4 prep
Pseudo Stack Top action : R3,56
NP v NP PP lookahead
Q—I—.—I——-.—l—-.——f_—. $
0 2 5 8 (R3) 4 action : RS

Fig.4 After neglecting the second delayed reduction.

NP VP PP PP FIRST of PP
.—I—.——I——.—-”“—'I'—.——’. rep*
0 2 3 7 4 prep
Pseudo Stack Top action : R2

Fig.5 After the second delayed reduction.

NP VP PP lookahead

e-u—6— 8 ———6—8u—=©6

0 2 3 7 action:R2

Fig. 6 The end of pseudo parsing.

meets an impure reduction RS (NP—NP PP), and the
second decision, which is the choice between the im-
pure reduction R35 (NP—NP PP) and the delayed
reduction R3 (VP—v* NP), must be made.

Figure 4 shows the stack after the pseudo parsing
has been done by the choice of the impure reduction
R5 in Fig. 3. A new delayed reduction R3 (VP—v*
NP) is tagged to the rightmost PP during the pseudo
parsing.

Figure 5 shows the stack after the pseudo parsing
has been done by the choice of the delayed reduction
(R3) in Fig.3. The lookahead for the next pseudo
parsing is FIRST of the rightmost PP, and the pseudo
parser meets a new pure reduction R2 (VP—VP PP).

Figure 6 shows the stack just after the pseudo
parsing of Fig. 5. If the decision in Fig. 3 can not be
made, Fig. 4 and Fig. 6 will proceed in parallel making
the parse ambiguous. The next steps of parsing will be
continued with the right result.

For making a decision between an impure reduc-
tion and a delayed reduction, the knowledge such as
the following could potentially be adopted: 1)
unification-based augmentation; 2) frame-based
semantics; 3) parameter-based pragmatics; and 4)
general inference mechanisms such as discourse plan-
ning. Although a complex semantic checking method
is absent, the decision could be made successfully by
using simple unification based semantics and the
knowledge related to the native speaker’s habit pos-
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tulated by Pereira [6] and Mcroy [5]. We will call the
above decision making a delayed resolution. A
delayed resolution always is strictly related to just a
previous shift-reduce conflict that has to be resolved
for the current viable prefix, as it was seen in the
previous example. Therefore, a delayed resolution
does not interfere with the correct parsing. For exam-
ple, Fig. 4 shows that a new shift-reduce conflict occurs
after the delayed resolution neglects the delayed reduc-
tion (VP—v* NP), and the resolution of this shift-
reduce conflict is delayed for the higher level parse by
the §-shift.

The shift-first parsing has the following problems:
first, all the CF grammars can not be parsed by shift-
first parsing; second, there are some difficulties to be
resolved to apply the shift-first parsing method to the
GLR. The next two sections considers those two
problems.

3. Shift-First LR(%k) Grammar

A shift-first LR (k) grammar is defined as follows:
Suppose a string is given to be parsed by a LR (k)
parsing table of a grammar. If the parser encountered
a shift-reduce conflict and it made the choice of shift-
actions by the §-shift, and if no parsing error occurs
until the parser meets the first impure reduction, which
needs the delayed resolution with the delayed reduc-
tion tagged by this J-shift, the grammar is a shift-first
LR (k) grammar.

The shift-first grammar has the following property:
Let us assume a shift-reduce conflict occurs on stack
oa, in which ¢ is not a null string, and the stack ¢’a’
is the result of the reduction of the conflict. When a
rule A—ap is the first impure reduction after a shift
action of the conflict has been chosen and a rule B
— @'y, in which £’ is made by the same terminals as
B, is the first reduction after a reduce action of the
conflict that has been chosen, if both are the rules of a
shift-first grammar, 8’ must be induced by £, i.e. 8'=
*> 4. In other words, once input terminals are parsed
to a parser stack by the shift-first strategy, the parsed
stack symbols must be used for the further parsing
without error.

For example, all the grammars in Fig. 7 are not
shift-first LR (1) grammars. When a string abc is
parsed by shift-first parsing, the parser fails because a
parsing error will occur before the parser meets any
impure reduction. All the grammars in Fig. 7 can be
transformed to shift-first grammars.

Figure 8 shows the result of the transformation.
The policy for the transformation is that a shift-reduce
confiict can be changed into a reduce-reduce conflict
by the following method:

Transformation: When a rule is A—¢B and there
exist a rule B—¢ and a rule C—DgA’y, where D="*>
B, if 5" and B can be induced from the same terminals
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S > Abe S>ABc S->aCd S>AB S->aC N v
S > abd A->a B->b B>bc C->bd N S>NV
A->a C->b A->a N
@ 3)
M Fig.9 A reduction in the GSS.
Fig.7 Some non shift-first grammars.
Ab N PP
S>#be g _ABc S->DCd S->AB  S->DC E ® i ® Np->NPP
S ->Dbd NP->N
A->2a A->a B->b B->bc C->bd (1) Before an impure reduction.
D> C->b D->a A->a D->a
i @ o) N P
(1 (2-2) B & B ® NP->NPP
Fig.8 Shift-first LR (1) grammars transformed from Fig. 7. NP PP
(2-b) ® L 5 ® #>#

that are not &, but 8’ can not be induced from 8, add
a new rule E—¢ and replace A—af with A—ES.

All CF grammars can be transformed to shift-first
grammars by this method. Fortunately, if a CF gram-
mar of natural language does not contain any lexical
rule, it can trivially be written by a shift-first grammar.
However, if it does include its lexical rules, it becomes
very difficult to create a shift-first grammar for the
language. The reason for this is that a CF grammar
without lexical rules, by including its lexical rules,
becomes a CF grammar that contains many rules of the
same style, such as (1) and (2) of Fig. 7. Therefore,
shift-first parsing is not appropriate for the parsing of
a CF grammar with lexical rules.

4. Shift-First Parsing in GSS

A CF unification-based grammar for natural language
contains many single productions and reduce-reduce
conflicts for checking unification rules [9]. Moreover,
a shift-reduce confiict could contain shift-shift conflicts

~/in its shift and reduce-reduce conflicts in its reduction.

Therefore, in order to apply the shift-first parsing to the
GLR parsing, there exist the following problems to be
resolved: :

1) GSS construction for shift-first parsing

In the GLR parsing, the nodes with the same symbols
are merged to one symbol node during the process of
shift actions and ambiguity packing. However, for
shift-first parsing, although the node symbols are the
same, if their delayed reductions are different, they
must be treated as different symbols. Moreover, in the
GLR parsing, the same state nodes, which have the
same shift actions, are merged to one state node after
executing the reduce actions related to the same look-
ahead. However, for the shift-first parsing, the state
nodes with same state and shift actions become
different state nodes if the nodes were made by
different §-shifts, which include the shift actions with-
out ¢-shift. Except for the above two, all the proce-
dures of GSS construction for the shift-first parsing are
the same as the GLR.

2) Reduce action in the GSS

s
(2) After the delayed resolution.

Fig. 10 Delayed resolution for a delayed resolution with single
productions.

When a reduction (S—N V) is done on the GSS in
Fig. 9, the reduction is equivalent to three reduce
actions. Therefore, If V has a delayed reduction, the
delayed resolution for the reduction (S—N V) should
occur three times, i.e. the GSS in Fig. 9 must be treated
as three different stacks for shift-first parsing. For this
purpose, stacks for each delayed resolution should be
made while searching reduced symbols for a reduction.
We will call a stack related to one delayed resolution
a pseudo stack.

3) Delayed resolution in GSS

If a reduction can be successfully reduced without
consideration of any delayed reduction, this reduction
is defined as a valid reduction. Figure 10 shows that a
delayed reduction has a single production, and the
result of the delayed reduction makes no change in the
GSS structure. Since single productions do not have
enough knowledge for the delayed resolution, it could
be a difficult problem that a valid impure reduction is
compared with a delayed reduction that has the above
single productions. Therefore, in this case, the delayed
resolution could become that all the possible parses are
permitted. In Fig. 10, The result of the delayed resolu-
tion of (1) is (2-a) and (2-b) of (2). (2-a) is the
impure reduction itself which abandons its rightmost
delayed reduction and (2-b) is the result of the pseudo
parsing which proceeded with the delayed reduction by
using PP as the lookahead symbol. The above single
production is not related to the ambiguity of a sen-
tence, but to the syntactic acceptability. Therefore, the
above delayed resolution would be successfully
resolved by the parallel analysis of the GSS. However,
if a delayed reduction has the productions that are not
the above single productions, or there occurs a non-
single production during the pseudo parsing after the
processing of a single production, it is possible that the
delayed resolution makes a decision for disambigua-
tion. Therefore, if a valid impure reduction occurs,
and its rightmost delayed reduction is a d-symbol, the
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proceeding process is the following:

1) If the delayed reduction in the d-symbol has
single productions, start the pseudo parsing which
proceeds with the delayed reduction by using the
d-symbol as its lookahead symbol.

2) If a non-single production, which is a valid
reduction, exists in the delayed reduction, or occurs
during the pseudo parsing after 1), make a decision
between the impure reduction and the non single
production for the delayed resolution. If the choice is
the impure reduction, go to 4). If not, start or continue
the pseudo parsing with the non-single production.

3) If 1) and 2) completed their pseudo parsing
successfully, discard the impure reduction, and con-
tinue the parsing with the result obtained by their
pseudo parsing.

4) Change the stack content by removing the
delayed reduction in the d-symbol. Continue the
parsing with the new stack and the impure reduction.

For example, on (1) in Fig. 11, if the delayed
resolution chooses the impure reduction, the choice of
(2-a) in Fig. 11 will be taken. However, in the choice
of the delayed reduction, the choice of (2-b) in Fig. 11
must be taken discarding the original reduce actions in
(1) of Fig. 11. If delayed resolution fails, the both will
be taken.

4) Resolution of reduce-reduce conflicts

If the reduce actions in a reduce-reduce conflict are
sorted in decreasing order by the length of the right
side of each reduce-action rule, it is possible to check
whether these reduce actions contain a valid impure
reduction by testing sequentially. When there exist
more than one impure reduction that is valid and
non-single production by the above check, if the length
of the right side of each production is deferent, the
confiict of these impure reduction should be resolved
by some other mechanism. Also, if there exist produc-
tions in a delayed reduction which have the above
condition, the conflict resolution would be needed.
5) For more deterministic parsing

Since grammar symbols are parsed by the pseudo
parsing, the information of a symbol to be parsed can
be used for more deterministic parsing. For this
purpose, we can make a D-FOLLOW table, also called
a ‘direct follow table,” as follows;

a) If there is a production A—aBp, then everything in

P NP 43 NP -> NP PP
B @ & @ B ® g
b NP1 -> NP PP

(1) Before an impure reduction.

p NP PP
) NP -> NP PP

PP PP
(2-b) B ® 5 @[>
# o>

(2) After the delayed resolution.

Fig. 11 Delayed resolution for a delayed resolution with non-
single productions.
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the first grammar symbol of 8 except for ¢ is placed in
D-FOLLOW (B).

b) If there is a production A—gB, or a production A
—aBpB where FIRST (/) contains ¢, then everything in
D-FOLLOW (A) is in D-FOLLOW (B).

The above D-FOLLOW table might be redundant
when a precise parsing table is used for parsing.
However, in the case of using the LR (0) parsing table,
a considerable number of redundant reduce actions are
discarded by the following check: “If the lookahead
symbol does not belong to the D-FOLLOW (the left
symbol of a reduce rule), abandon the reduce action.”

5. Interleaved Strategy for The GLR

The main goal of the shift-first parsing is the inter- .-
leaved parsing which offers advantages for not only
deterministic parsing but also efficient parsing. As seen
in the previous sections, the shift-first parsing has the
same result as the GLR by permitting all the delay:
reductions and impure reductions in parallel during
the parse. There exist some problems in shift-first
parsing, as same as GLR, for interleaved paring. Since
actions with a shift-reduce confiict are changed into
only shift-actions, the first problem of the shift-first
parsing is the resolution of the shift-shift confiict and
reduce-reduce conflict for interleaved parsing. If
reduce-reduce conflicts and shift-shift conflicts are
related to syntactic acceptability of a sentence, the
parallel analysis of the GLR provides a successful
method to resolve these confiicts. However, if they are
related to ambiguity of a sentence, they must be
resolved by interleaved parsing. A reduce-reduce
conflict related to an ambiguity can be resolved at the
parse time by using some knowledge including the
native speaker’s conventions. A shift-shift conflict(
related to an ambiguity, even though it is scarce, can
not be resolved in parse time, and the ambiguity caused
by it has to be resolved after the parse. Therefore,
the shift-first parsing, the problem for interleaveu
parsing can be defined as that of the delayed resolution
including the resolution of a reduce-reduce conflict
related to ambiguity of a sentence, i.e. the problems for
interleaved parsing are related only to reduce actions
in the case of the shift-first parsing.

Figure 12 shows the block diagram for interleaved
parsing. Syntactic processing is guided by separated

e,

Reduce-reduce
¥ Conflict
Unification 1 : ’/ Resolver
based  |—p-| Interleaved Detayed
CF grammar Parser  [Wq Resofution
Syntax Reso'lver
Semantics

Fig. 12 An interleaved parsing strategy.
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semantic handling modules at the parse time. The
more detail procedure of this parser will be shown in
the appendix.

6. Implementation and Discussion

Our parser, in which a unification based CF grammar
has been adopted, was implemented with about 2,600
lines of CommonLisp on a Sun Sparc II Station. As
the result of the implementation, if no semantic knowl-
edge is available, i.e. all delayed resolutions fail, our
parser produced the same parsing result as the GLR
except for the overhead for various checking. How-
ever, by using simple semantics, which is semantic
marking in a restricted domain, our parser became
almost deterministic.

As seen in the previous section, using our metho-
dology it is possible to provide semantic application
during LR parsing to make the parser more determinis-
tic. Currently our experimental parser has separate
bodies for syntactic and semantic constraint postula-
tions, which are dynamically combined only at the
time of processing (during the LR parsing). There-
fore, similar to other modular architectures, the mainte-
nance of syntactic constraints and semantic (pragmatic
and ontological) knowledge can be provided separate-
ly.

Table 1 shows a simple comparison with the GLR.
For the comparison without semantic checking over-
head, we used a random choice for a delayed resolu-
tion, and the preposition phrase attachment to increase
the number of shift-reduce conflicts. This comparison
shows that the execution cost of the GLR parsing,
which produces many parses, is proportional to the
number of shift-reduce conflicts related to ambiguity.
And it also shows that the execution cost of the shift-
first parsing, which produces only one parse, is propor-
tional to the length of the string to be parsed. We can
also see that the resolution of a shift-reduce conflict
makes the parsing remarkably effective. Shift-First-All
in Table 1 denotes the case that the shift-first parsing
proceeds by permitting all delayed reductions and
impure reductions.

7. Conclusion

Our parser becomes deterministic, provided that

Table 1 A simple comparison with the GLR.

the number of | the number GLR Shift-First Shift-First-All
shift-reduce of parses
conflicts inthe GLR |lime | storage | time | storage time | storage
1 2 1 1 0.8 0.6 1 1
2 5 2 2 1 0.9 2 2
3 14 3 3 12 1.2 4 4
4 42 4 4 1.5 1.5 8 8
5 132 5 5 1.8 1.8 16 16
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enough knowledge is available, and nondeterministic
in the absence of knowledge. Also the more semantics
we have, the better parsing we can achieve. Of course
whether such semantic constraints are easily available
is another question. One claim we would like to make
here however, is that until now, even if such semantic
knowledge was available, it was very difficult to use the
standard GLR parser to take advantage of such knowl-
edge. It is because in LR parsing, the LR tables are
precompiled previous to the parsing and it was very
difficult to do anything during the parsing since the
parsing proceeds based upon the table-lookup accord-
ing to the syntactically precompiled table. This was
the weakness of GLR parsing compared to other
methods that do everything in real-time. This weak-
ness was inevitable in order to get the advantage in
speed. Our methodology is to propose the solution to
this “speed vs. inflexibility” trade off through the
shift-first scheme by providing the mechanism for
allowing for semantic flexibility without sacrificing the
speed of GLR parsing.
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Appendix: Interleaved Parsing Procedure for the

GLR

Figure A -1 shows a ACTIVE-STACK which contains
actions in the stack top. In the case of shift-reduce
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action [delayed reduction
(s21) | (®.11) (R.12) ACTIVESTACK[1]
action d.r.
510) G0 T i ‘ACTIVE~STACK[2]
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Fig. A-1 ACTIVE-STACKs.

conflict, its reduce actions are tagged to its ACTIVE-
STACK, and shift actions become the current actions.
The Tomita’s GLR parser can be changed for shift-first
parsing, making no changes to details of the method, as
follows:

1) The symbol shifted by an ACTIVE-STACK with a
delayed reduction is also tagged by the delayed reduc-
tion.

2) The reduce actions in an ACTIVE-STACK are
supposed to be sorted in decreasing order by the length
of the right side of each rule.

3) The reduce-all procedure of the GLR, which exe-
cutes all the reduce actions in ACTIVE-STACK-LIST,
is changed as follows:

FUNCTIONT reduce-all
shift-active-list <- nilj

WHILE (active-stack-list is nor nil)

(active-stack-list, lookahead);

a-active-stack <- car (active-stack-list);

active-stack-list <- edr (active-stack-list);
IF (a-active-stack has shift actions)

shift-active-list <- append
ELSE

reduce-action-list <- the actions in

(shift-active-list,  a-active-stack);
a-stack-active;
resolve reduce-reduce conflict of reduce-action-list, if possible;
WHILE (reduce-action-list is not nil);
a-reduce <- car (reduce-action-list);
reduce-action-list «- edr (reduce-action-list);
(result-of-reduce, reduce-action-list) <-
reduce-one (a-reduce, reduce-action-list,
append (shift-active-list, active-stack-list), lookahead);
active-stack-list <- append (active-stack-list, result-of-reduce);
return (shift-active-list);
END reduce-all;

FUNCTIONTT reduce-one (a-reduce, reduce-action-list,
all-active-stack-list, lookahead);
result-of-reduce <- nilj
WHILE (there exists a pseudo stack in the current GSS for a-reduce)
pseudo-stack-p <- pointers of GSS for a pseudo stack of a-reduce;
delayed-reduction <- nil; valid-impure <- ¢
IF (the reduction related to pseudo-stack-p is a impure reduction)
valid-impure <- check-reduce (a-reduce);
IF ((valid-impure is not nil) or
(valid-impure is nil and reduce-action-list is nil))
IF (there exists a valid delayed reduction that was found by
checking the validity from the rightmost delayed
reduction of the pseudo-stack-p)
d-symbol <- the symbol with the valid delayed reduction;
delayed-reduction <~ t;
a-result-of-reduce <-

pseudo-parse (valid-impure, pseudo-stack-p,
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d-symbol, lookahead);
result-of-reduce <- append (result-of-reduce,
a-result-of-reduce);
reduce-action-list <- nil;
IF ((valid-impure is not nil) and (delayed-reduction is nil))
a-result-of-reduce <- do the same reduction-function as the GLR
(except for the S8-propagation), in which all-
active-stack-list is used for ambiguity packing;
result-of-reduce <~ append

(result-of-reduce, a-result-of-reduce);

return (result-of-reduce, reduce-action-list);

END reduce-one;
FUNCTION pseudo-parse (valid-impure, pseudo-stack-p,
d-symbol, lookahead);
active-stack-list <~ create new active-stack by using d-symbol;
p-lookahead-list <- d-symbol and its right symbols;
start <~ t 3
WHILE (p-lookahead-list is not nil)

p-lookahead <- car (p-lookahead-list);

p-lookahead-list <- cdr (p-lookahead-list);

active-stack-list <- fill the actions of active-stack-list by using
FIRST(p-lookahead), LR table and D-FOLLOW;
IF (start ist)
impure-active <- create a new active-stack that has the same state
and actions as active-stack-list;
set the action field of active-stack-list with the delayed reduction
of active-stack-list, and the delayed reduction field of
active-stack-list with nil;
start <- nil;
IF (valid-impure is nil) impure-active <- nil;

active-stack-list <- p-reduce-all (impure-active, valid-impure,
active-stack-list, p-lookahead);
active-stack-list <- merge the same active-stacks in active-stack-list;
active-stack-list <- do the same shift procedure as the GLR (except for
8-shift and symbol shift), in which p-lookahead
is used as the lookahead symbol;
active-stack-list <~ fill the actions of active-stack-list by using the
current state of active-stack-list and lookahead;
return (active-stack-list);
END pseudo-parse;
FUNCTION p-reduce-all

(impure-active, valid-impure,

active-stack-list, p-lookahead);
shift-active-list <- nil; first <- t;
WHILE (active-stack-list is not nil)

a-active-stack <- car

impure-choice <~ t;

(active-stack-list);

active-stack-list <- cdr (active-stack-list);

IF (a-stack-active has shift actions)
shift-active-list <- append (shift-active-list,
ELSE

reduce-action-list <- actions in a-stack-active;

a-active-stack);

resolve reduce-reduce conflict of reduce-action-list, if possible;
WHILE (reduce-action-list is not nil)
a-reduce <- car (reduce-action-list);

reduce-action-list <- cdr (reduce-action-list);

T The functions, such as car, c¢dr and append, are the
same as in Lisp language.

T1 This function does not consider the case that pure and
impure reductions can occur concurrently in pseudo stacks
for a reduce action. The function becomes more complex
for this case, but that is only a problem of programming
techniques.
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valid-d-reduce <- t;
IF ((first is t) and
valid-d-reduce <- check-reduce (a-reduce);

(impure-active is not nil))

IF (valid-d-reduce is not nil) and (the length of
the right side the rule for a-reduce is greater than 1)
choice <~ delayed-resolution (valid-impure,
valid-d-reduce);
first <- nil;
IF (choice is impure-reduction)
return (impure-active);
ELSE 1IF (choice is delayed-reduction)
impure-choice <- nil;
IF (valid-d-reduce ist)
(result-of-reduce, reduce-action-list) <-
reduce-one (a-reduce reduce-action-list,
append (shift-active-list, active-stack-list), lookahead);
active-stack-list <- append (active-stack-list,
result-of-reduce);
IF ((impure-choice is nil) and (shift-active-list is not nil))
impure-active <- nil; ’
return (append
END p-reduce-all;

(impure-active, shift-active-list));

FUNCTION

make a choice between valid-impure and valid-d-reduce by using all

delayed-resolution (valid-impure,

the knowledge related to them;
IF (the choice is available) return ("impure" or “delayed");
ELSE IF (the choice is not available) return (nil);
END delayed-resolution ;

FUNCTION

return (unification values of reduced symbols and the result of

check-reduce (a-reduce) ;

the reduction, which is obtained by simulating a-reduce

without consideration of any delayed reduction.);
END check-reduce;
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