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Abstract

This paper describes the Phoneme-Based Direct Memory Access Translation Sys-
tem ($DMTRANS) which is a speech-to-speech translation system developed at
the Center for Machine Translation at CMU. #DMTRANS utilizes a phonolog-
ical and episodic/thematic memory network, and performs spreading-activation
guided-marker-passing which is massively parallel in nature. $DMTRANS han-
dles the problem of multiple hypothesizations of input phonetic streams through
network memory-based encoding of knowledge for language-specific phonology
and morphophonetics, as well as episodic/thematic memory that supplies con-
textual disambiguations of the input. Also, ambiguity resolution is performed
using cost analysis and contextual priming through thematic maker propagations.
Through dedicated marker passing scheme for generation markers, a concurrent
generation is supported so that the system produces parts of output speech even
before the end of the input sentence, thus modeling simultaneous interpretations.
This model is ideal for massively parallel hardware architecture.
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1 Introduction

Recently a few efforts have been made in the area of processing speech in-
put to a natural language understanding system. These include the work of
Hayes, et al[1986], Tomita[1986], Poesio&Rullent[1987], Saito& Tomita,[ 1988],
Tomabechi&Tomita[1988a], and Hauptmann, et al[1988]. Among them, Tomabechi-
&Tomita and Hauptmann, et al use contextual information for disambiguation of
speech inputs and therefore, since extra-sentential information is important in the
speech input system, #DMTRANS shares this feature of the two systems. The
uniqueness of #DMTRANS, however, is that:

e it uses a parallel spreading activation network from the phonetical level,

¢ morphophonetic and phonological knowledge is dynamically utilized dur-
ing memory activity,

e the morphophonemic, episodic/thematic and pragmatic levels of processing
are fully integrated.

$DMTRANS uses parallel processing, and our experiments with the prototype
SDMTRANS at Center for Machine Translation at the Camegie Mellon University
show that #DMTRANS is a promising framework for translating speech input
cross-linguistically in new generation parallel computers.

2 Some Background and History:

2.1 Recognize-and-Record

SDMTRANS is a “Phoneme-Based Direct Memory Access Translation” archi-
tecture which represents what we call the “recognize-and-record” paradigm of
natural language processing usually grouped as DMA (Direct Memory Access)
models. In this model, natural language understanding is viewed as a memory
activity which identifies input with what is already known in memory as episodic
(experiential) and thematic knowledge. This is contrasted with the traditional
model of parsing, which we call the “build-and-store” paradigm, in which a syn-
tactic parser (with the help of semantics) builds up a tree-style representation
of an input sentence, and processing is done sentence by sentence with little (if
any) interaction between parses. In other words, the DMA paradigm models the
human mind in the sense that past linguistic and non-linguistic experiences are
being remembered during the course of understanding the input, and each sen-
tence recognized records a context that influences the processing of successive
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inputs. On the other hand, in traditional (non-DMA) Systems, each input sen-
tence is parsed into syntactic trees, and semantics are used primarily as a tool
for guaranteeing the right configuration of Syntactic trees; normally, no long-term
memory (such as experiential memory) is involved during the parse. Also, in
these systems, the result of a parse is lost after the processing of each sentence.

2.2 A Brief History

The Direct Memory Access method of parsing originated in Quillian’s[1968] no-
tion of semantic memory, used in his TLC (Quillian[19697), which led to further
research in semantic network-based processing!. TLC used breadth-first spread-
ing marker-passing as an intersection search of two lexically pointed nodes in a
semantic memory, leaving interpretation of text as an intersection of the paths.
Thus, interpretation of input text was directly performed on semantic memory.
DMA was not explored as a paradigm for parsing (except as a scheme for disam-
biguation) until mid 1980°s when DMAP) (Riesbeck &Martin{ 1985]) followed by
Tomabechi[1987a,b] developed the DMA paradigm into theories of parsing and
translation respectively. These projects were part of the Yale Al Project and were
aimed at building a DMA natural language system to be integrated with case-
based reasoning systems developed under the XP (eXplanation Patterns) theory
of Schank[1986). Since DMA parsers work directly on memory through spread-
ing activation, integration of natural language understanding with the experiential
memory of the case-based system became possible. These DMA systems used a
guided marker-passing algorithm to avoid the problem of an explosion of search
paths, from which a dumb? (not guided) marker passing mechanism inherently
suffers. P-markers (Prediction markers) and A-markers (Activation markers) are
markers passed around in memory, adopting the notion of concept sequence

speech-to-speech translation was demonstrated at Camegie Mellon University. In

"This includes the work of Fahlman{1979), Hirst&Charniak[1982], Small&Reiger[1982),
Charniak[1983], Haun&Reimer[1983], Hirst[1984], Chamniak{ 1986], Charniak& Santos[1987],
Norvig{1987], and recent connectionist and distributed models such as Granger&Eiselt[1984],
Waltz& Pollack[1984], Berg[1987], Bookman[1987].

We call it ‘dumb’ when markers are passed everywhere (through all links) from a node, In a
‘guided’ scheme, markers are passed through specific links only.



Tomabech&Tomita[1988a], DMA based contextual inference was integrated into
a unification-based (LFG, Bresnan[1982]) phoneme-parser (Saito&Tomita[1988])
as a part of real-time speaker-independent speech-to-speech translation system?
(Tomabechi, er al[1989]).

3 Problems in Speech Input
3.1 Phonetics, Phonology and Morphology

The difficulty of parsing speech input is that unlike written text input, a parser
receives multiple hypotheses as input for a particular voice input. This is partly
due to current limitations on speech recognition systems, which are incapable
of determining specific phonemes for each input and generally produce several
possible segmentations of the hypothesized phonetic stream, It is not rare that a
speech parser outputs 30 to 50 well-formed, semantically acceptable parse results
for each independent sentence of a speech recognition device output.

For example, when testing the CMU-CMT speech parser (a phoneme-based
Generalized-LR parser (GLR, Saito&Tomita[1988])), the Japanese input “ata-
magaitai” (“I have a headache”) was spoken into a speech recognition system*
(under ordinary office environment) and accepted by the integrated’ parser with
'57 ambiguous interpretations. Each of the ambiguous interpretations are semanti-
cally legitimate, meeting the local restrictions set forth by case-frame instantiation
restrictions. Below are some of the highly scored interpretations:

atamagaitai (I have a headache.)

kazokuwaitai ((The) families want to stay.)
kazokuheitai ((My) family is soldier(s).)
kazokudeitai (I want to stay as (a) family.)
asabanaisou (Love (make love) (every) morning and night.)
asakaraikou (Go (come) {(from) tomorrow morning.)
kazokuwaikou ((The) families go.)

asamadeikou (Go before morning, Come until morning.)
okosanaika (Shall we wake (one) up?)

okosumaika (Shall we not wake (one) up?)
kazokuheikou ((The) family is disappointed.)
kazokudeikou (Go with the family.)

gohunaisou {Love (make love) for five minutes.)

3Which is currently accepted as the first real-time speech-to-speech translation system.

“Matsushita Research Institute's speech recognition hardware. The speech recognition system
and the speech input enhanced LR parser are described in detail in Saito&Tomita{1988].

3By ‘integrated’, we mean concurrent processing of syntax and semantics during parsing as
opposed to some parsing methods where syntax and semantics are separately processed.
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ugokumaika (8hall I not move?)
atukunaika (Is it not hot?)
dokoeikou (Where shall we go?)
dokodeikou (Where shall we come?)
koupumadeikou (go to (the) cup.)

These are just some of the 57 disambiguations that were produced as accept-
able readings by the speech understanding system given the input “atamagaitai”.
One problem that is typified here by the $GLR speech parser, and commonly
shared by most existing speech understanding systems, is that these systems
do not sufficiently utilize morphophonetic and phonological knowledge during
recognition and understanding. We will be discussing such knowledge in Section
4, but to be precise, it is the kind of knowledge that, for example, dictates what
type of phonetic and phonological variations are possible for each type of pho-
netic features specific to Japanese, Humans apparently utilize such knowledge in
processing a sequence of phones, and we would like to model such processing,
since speech input is not a sequence of independently-determined phones but a
connected string of successive phones.

3.2 Need for Contextual Knowledge

As we have seen in the preceding subsection, even with the semantic restrictions
set forth by a syntax/semantics parser, we suffer from the problem of ambiguities
that do not arise when the complete text is considered (i.e., 57 interpretations of
“atamagaitai” in the preceding subsection were all acceptable syntactically and

morphophonemic analyses of the speech input may be narrowed with the use of
phonetic and phonological knowledge during speech understanding, we will still
have large number of ambiguities for a specific phonetic stream.

In other words, local semantic restriction checks and phonetic/phonological
narrowings are not sufficient for disambiguating continuous speech input, since
an interpretation can be totally legitimate phonologically, syntactically, and se-
mantically, but can mean something drastically different from what has been input
into the speech recognition system (as well as being contextually inappropriate).
The speech understanding system needs extra-sentential knowledge to choose an
appropriate hypothesis for grouping phonetic segments and for selecting the ap-
propriate word-sense of lexical entries, That is to say that the need for contextual
knowledge in speech understanding systems is even more urgent than in text in-




put understanding systems; in a speech understanding system, the input can be
interpreted in a way that is not possible in text input systems, and the input can
still be acceptable to the local semantic restriction checks that integrated parsers
perform within a sentence (such as slot-filler restriction checks of case-frame
parsers).

4 Phonological Knowledge in ZDMTRANS

Phonological knowledge is represented in #DMTRANS as weighted links connect-
ing phonetic and phonemic nodes and functions stored in phonetic nodes capturing
the physical and acoustic properties of sounds in a language (distinctive features)
as well as environments that dynamically affect phonetic aiterations. Phonological
knowledge is used for providing the information to identify physical properties of
articulated sounds instead of mental representations of each segments of words.
Speakers have mental representation of sound systems, which are different from
actual physical properties. Speakers of English feel /p/ in ‘pin’ and ‘spin’ are
identical (and spelled the same in text inputs), but physically they are different
sounds. /p/ in ‘pin’ is aspirated, represented in [ph], whereas /p/ in ‘spin’ is
not aspirated represented in [p]. Both aspirated and unaspirated sounds do not
differentiate the meaning in English, and they are predictable from a given en-
vironment. These units of phonetic segments are called phones. Thus, there are

two levels of sound representation: a phonological level and a phonetic level.

.Phonological rules convert phonological representations into phonetic ones.
They can change, delete, or add segments. They can also coalesce or permu-
tate segments. In Japanese, high vowels become voiceless between voiceless
consonants or after a voiceless consonant in the word final position.

VvV => [-voice] / c | c |
[+high] / [-voice] | [-voice] |
| |

1 # _

Phonological rules® apply to classes of phonetically related segments. In
order to capture the common features that certain phonological segments have,
phonologists use distinctive features to represent them (Jakobson& Halle{1956];
Chomsky&Halle[1968]). For example, Japanese vowels are represented using
the SPE system (Chomsky&Halle) in the following matrix.

®Phonological rules that dynamically affect processing due to phonological environments are
captured via memory network representation (utilizing daemons in our system in ‘FrameKit’ (Ny-
berg[1988]) system) stored locally to each phones which was transformed from declarative de-
scription of rules originally supplied as phonological knowledge.
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i a o u
high + - - - +
back - =+ o+ 4
low - - + - -

The five vowels can be distinguished by using three kinds of features, and the
matrix shows the phonemic relations. We can see the phonemic distance by
counting the differences which are representable as weights:

i e a o) u
0 1 3 2 1
0 2 1 2

¢} 1 2

0 1

0

g 0O MmO P

We can assume that lower distance numbers have higher confusion probabilities
(i.e., higher weights). Therefore, when the input phone is [a], we can test from
the segment which has a lower distance number, such as [a], then [o0], and so
on. With this matrix we can limit the test to close segments instead of testing
all the segments’ and group close sounds in the network with certain thresholds.
For consonants, distinctive feature matrix is more complex than our example of

weights of the links.

The utilization of distinctive feature matrices described above; however, is a
static knowledge that are encoded initially to the network (before parsing). We
also need a scheme to dynamically assess the confusion of phones depending
upon the phonetic environments that appear in the input speech. In Japanese,
some speakers produce a glottal stop in a word initially before a vowel. In some
speech recognition systems, the glottal stop may be interpreted as some voiceless
stops, most likely /k/ because it is closer than others. The example of voiceless
high vowel (specifically [u] and [i] in Japanese) between two voiceless conso-
nants (or word final after voiceless consonant) is one case that we have seen in
the phonological rule above. The method of capturing these types of phonolog-
ical rules in our system is that we initially provide phonological environments
and rules in a declarative form and the System precompiles the knowledge into
functions stored in the phonetic nodes locally that are assessed every time the

’Since we use Matsusita Research Institute’s Speech Recognition hardware, we adopt the phone-
mic system that the hardware recognizes. However, we have to note that some segments are not
Phonemes but are allophonic variants,



node is activated® so that the phonemic activations are dynamically modified
depending upon the phonetic environments on the speech input independent of
the confusion matrices described above. This kind of phonological knowledge is
thus encoded in the network for the dynamic phonetic activation changes, as well
as the static confusion matrices that are pre-supplied and encoded as weighted
links of the network along with the phonemic distances.

5 Contextual Knowledge in #®DMTRANS

SDMTRANS uses an episodic/thematic memory network, similar to the ones de-
scribed in Schank[1982] and Schank[1986], which is capable of dynamic modi-
fications, inference and leaming. Context in such a conceptual memory network
can be represented as a grouping of concepts that are associated in a certain
manner, i.e. an activation of one concept in memory triggers (or can potentially
trigger) some other concepts in the memory network. To put it in another way,
there is a relationship between concepts in which activation (recognition) of one
concept reminds some other concept that it is related in a certain way. As we
will see in detail in the following section, BDMTRANS uses the lexically-guided
spreading activation mechanism for parsing. Context in this scheme is repre-
sented as what has been activated so far as 1) accepted concepts representing the
previous sentences and 2) the concepts in the currently active concept sequences.
These activations represent the recognition of what is being said so far and also
represents what is likely to be heard under the current context. Readers may find
our scheme of spreading activations similar to those researched by connection-
ists. However, we have not adopted connectionist associative architecture® and

*The functions are stored as daemons in the nodes that are implemented via ‘FrameKit’ rep-
resentations. For example, with the voiceless vowel between voiceless consonants example, the
rule is originally supplied declaratively and then the declarative rule is precompiled as functions to
be evaluated and stored locally in the phonetic node representing the voiceless vowel, At parsing
time, when the voiceless vowel is hypothesized by the speech recognition hardware, i.e., receives
the activation (A-Marker), then the functions stored in the node as the daemons are triggered
and checks the environment (a lazy evaluation is used to attain the evaluation for both preceding
and following nodes) and if the environment matches the precompiled knowledge for the voice-
less vowel between voiceless consonants, then the voiced vowel phonetic nodes (i.e., [i] and [u]
for Japanese) get activated and send activation to their phonemic nodes instead of activating the
phonemic node for voiceless vowel.

*The connectionist associative model still lacks abilities to express complex relations between
concepts and to perform variable binding (marker passing algorithm with structured markers can
handle this) which are essential to handle linguistic phenomena such as metonymy as explained in
Touretzky([1988].
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back-propagation in our thematic conceptual clusters. Our spreading activations
are guided and we do not spread everywhere.

6 Understanding in #DMTRANS

6.1 Phone Level Activity

PDMTRANS is the first DMA parser that works at the phonetic level. We will
discuss the scheme of phonetic and phonological recognition in this subsection.
First, ®DMTRANS has as its nodes in the memory network nodes for phones and
phonemes in each language. A phoneme may be realized as different phones
in different phonetic environments. Several different phones may represent the
same phoneme, for example phone [e] after dental and alveolar stops and af-
fricates may represent phoneme /a/, in addition to phone [a] representing the
phoneme /a/ in ordinary environments. In our memory network, each phone is
connected to phonemes they represent via abstraction links, Also, each phoneme
is connected by weighted phonological relation links to other phonemes. The
weights of the links are determined by the strength of phonemic closeness based
upon phonological distinctive feature thresholds as described in Section 4.
Above the phonemic nodes in the abstraction hierarchy are the lexical nodes,
representing words. We have each lexical nodes in the memory network contain-
ing the phonemic sequence realizing the lexical entry in the given language. For
example, in Japanese the lexical node “atama” (head) has the list <at am a>
attached to it. So the structure linking phonetic node to lexical node is like this:

"atama" < lexical node
<a t a m a> < phonemic sequence

/ attached to "atama"
/
| =5--/u/ < phonological rel link with
/7 distinctive feature weight
b/
/a/ < phoneme node
!

[a] < phone node

We have two types of markers (structured objects) passed around in memory.
One is called P-Marker (for Prediction-Marker) and the other is called A-Marker
(for Activation-Marker). P-Markers are passed along the phonemic sequences
and A-Markers are passed above in the abstraction hierarchy (i.e., from phone
to phoneme). Both markers contain information about which node originated the
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marker passing. P-Markers also contain information about which was the imme-
diately preceding node in the sequence. The algorithm for phonetic recognition is
as follows. At the beginning of recognition, all the first elements of the phonemic
sequences (such as /a/) are P-Marked by lexical nodes. -

1. when the first input phone comes in (with this example, [a]) we put an
A-Marker on (A-Mark) the phone node representing the phone (the node

{a]).

2. when a node receives an A-Marker (i.e., if A-Marked) it sends an activation
to (A-Marks) the node in its abstraction (i.e., phoneme /a/).

3. when an A-Marker and P-Marker meet, send a P-Marker to the next element
of the sequence (i.e., since /a/ was P-Marked by the lexical node "atama",
it sends a P-Marker in turn to £/).

4. when the whole sequence is activated, then activate the root of the sequence
(i.e., by repeating from 1. for [t], [a], [m], [a], the phonemic sequence <a
t am a> gets accepted and then we activate the lexical node “atama”).

This is the basic cycle that is used in #DMTRANS. In the next subsection we
discuss how the same algorithm is used for further processing at the sentential
level, activating the episodic/thematic memory network. One thing we omitted
in the above algorithm (for the sake of simplicity) is the way the phonological
relation link is utilized in the activation of phones. Let us examine how this
works:

When a certain phone (such as [t]) is activated, it not only activates its
abstraction (such as the phoneme //) but also activates other phonemes that are
related by the weighted links exceeding the given threshold. The weight of
the phonological relation link is based upon distinctive feature study of each
phone in the given language. For example, in Japanese the phoneme /t/ has
the distinctive features ‘alveolar’ and ‘stop’ shared with the phoneme /d/, and
link weight of 8 between them. So, if the threshold is given to be 5, when
phone [t] is activated, both phonemes /t/ and /d/ are activated. This way, the
phonological knowledge is encoded in the memory network as weighted links and
is utilized during the spreading activation. Also, if the activated node contains
the phonological rule application functions (i.e., stored as daemons, see footnote
7), and if the evaluation applies the rule and perform the dynamic alteration of the
currently active phonetic node, then the phonemic nodes of the altered phone is
activated capturing the phonetic changes in different environments which are not
expressed in the static weighted links. Of course, because we have many lexical
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entries that share similarity in attached phonemic sequences, and also because of
activation of allophones (i.c., as we have seen both [a], and [e] may be under /a/),
we have quite a significant number of simultaneously active phonemic sequences
for a given stream of phones. This is where the strength of the parallel nature of
our spreading activation mechanism is demonstrated. Since our memory network
is a massively parallel network, the spreading activations for each concurrently
active phonemic sequences will be parallelly performed.

6.2 Word Level and Sentential Level Activity

After a lexical node is activated through the acceptance of a whole phonemic
sequence attached to a lexical node, we have similar spreading activations at
the word level. We will not include the details of this processing in this pa-
per because it is described in detail elsewhere (Tomabechi[1987b], Tomabechi-
&Tomita[1988b], and Kitano, ez al[1989]). One brief example would be the
processing of the sentence “atamagaitai”, which we saw before as a problematic
input to other speech understanding systems. We use basically the same algo-
rithm as we saw in the processing at phonetic level, except that each unit in the
sequence is not a phoneme but a lexical node or a concept node and we call the
sequece of such nodes concept sequences. An example of a concept sequence
is <*BODY-LOCATION *PP[GA] *PAIN-SPEC> representing the sequence of con-
cepts appear in “atamagaitai”. The concept sequence can be regarded as a kind
of subcategorization list (as in HPSG, Pollard&Sag{1987]) or as a generalized
version of a phrasal lexicon (Becker] 1975]) except that the sequence can be at
higher levels in abstraction hierarchy as well as being episodic and thematic such
as in MOPs and EXPLANATION PATTERNS (Schank[1982&1986]) encoding the
knowledge for contextual processing.

We have nodes such as *HAVE-A-PAIN (representing the concept having a
pain) and concept sequence such as <*BODY-LOCATION *PP[GA] *PAIN-SPEC>
attached to the node (we call it root node if a concept sequence is attached to it),
The elements of the sequence are the nodes in the memory network representing
certain concepts!©,

SDMTRANS uses three markers for parsing:

e An Activation Marker (A-Marker) is created when a concept is initially
activated by a lexical item or as a result of concept refinement. It indicates

°+PP(GA] is a syntactic category representing the post-position “ga”. This way, we can integrate
syntactic knowledge as in subcategorization lists in syntactic theories as well. ‘#’ preceding a
concept name indicates that it is represented using our frame language ‘FrameKit'.
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which instance of a concept is the source of activation and contains relevant
cost information. A-Markers are passed upward along is-a links in the
abstraction hierarchy.

¢ A Prediction marker (P-Marker) is passed along a concept sequence to
identify the linear order of concepts in the sequence. When an A-Marker
reaches a node that has a P-Marker, the P-Marker is sent to the next element
of the concept sequence, thus predicting which node is to be activated next.

o A Context marker (C-Marker) is placed on a node which has contextual
priming.

Information about which instances originated activations is carried by A-
Markers. The binding list of instances and their roles are held in P-Markers!!,

The following is the algorithm used in DMTRANS parsing:

Let Lex, Con,Elem, and Seq be a set of lexical nodes, conceptual nodes, el-
ements of concept sequences, and concept sequences, respectively.

Parse(S)
For each word w in S, do:
Activate(w),
For all ; and ;:
if Active(N;) A N; € Con
then do concurrently:
Activate(isa(N;)
if Active(e;.N;) A Predicted(e;.N;) A —~Last(¢;.N;)
then Predict(ej1.N;)
if Active(e;.N;) A Predicted(e;.N;) A Last(ej.N;)
then Accept(N;), Activate(isa(N;))

Predict(N)
for all N; € N do:
if N; € Con,
then Pmark(N;), Predict(isainv(N;))
if N; € Elem,
then Pmark(N;), Predict(isainv(N;))
if N; € Seq,

"Marker parsing spreading activation is our choice over connectionist network precisely because
of this reason. Variable binding (which cannot be easily handled in connectionist network) can be
trivially attained through structure (information) passing of A-Markers and P-Markers.
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then Pmark(ey.N;), Predict(isainv(ey.N;))
if N; = NIL,
then Stop.

Activate

I — instanceof (c)
if i = ¢ then

createinsi(c), Addcost, activate(c)
else

foreachie /

do concurrently:
activate(c)

Accept
if Constraints # T
Assume(Constraints), Addcost
activate(isa(c))

where N; and ¢;.N; denote a node in the memory network indexed by ; and a j-th

element of a node N;, respectively.

Active(N) is true iff a node or an element of a node gets an A-Marker.

Activate(N) sends A-Markers to nodes and elements given in the argument.

Predict(N) moves a P-Marker to the next element of the CSC,

Predicted(N) is true iff a node or an element of a node gets a P-Marker,

Pmark(N) puts a P-Marker on a node or an element given in the argument,

Las«(N) is true iff an element is the last element of the concept sequence.

Accept(N) creates an instance under N with links which connect the instance to

other instances.

isa(N) returns a list of nodes and elements which are connected to the node in

the argument by abstraction links,

isainv(N) returns a list of nodes and elements which are daughters of a node N.
Some explanation would help understanding this algorithm:

1. Prediction.
Initially all the first elements of concept sequences (CSC - Concept Sequence
Class) are predicted by putting P-Markers on them,
2. Lexical Access.
A lexical node is activated by the input word.
3. Concept Activation.
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An A-Marker is created and sent to the corresponding CC (Concept Class)
nodes. A cost is added to the A-Marker if the CC is not C-Marked (ie. A
C-Marker is not placed on it.).

4. Discourse Entity Identification
A CI (Concept Instance) under the CC is searched for.
If the CI exists, an A-Marker is propagated to higher CC nodes.
Else, a CI node is created under the CC, and an A-Marker is propagated
to higher CC nodes.
5. Activation Propagation.
An A-Marker is propagated upward in the abstraction hierarchy.
6. Sequential Prediction.

When an A-Marker reaches any P-Marked node (i.e. part of CSC), the P-
Marker on the node is sent to the next element of the concept sequence.

7. Contextual Priming

When an A-Marker reaches any Contextual Root node. C-Makers are put on
the contextual children nodes designated by the root node.
8. Conceptual Relation Instantiation.

When the last element of a concept sequence recieves an A-Marker, Constraints

(world and discourse knowledge) are checked for.
A CSI is created under the CSC with packaging links to each CI. This
process is called concept refinement.
The memory network is modified by performing inferences stored in the
root CSC which had the accepted CSC attached to it.
9. Activation Propagation
A-Marker is propagated from the CSC to higher nodes.

Concept refinement'? is an activity to locate the most specific node in memory,
below the activated root node, which represents the specific instance of the input
text. Such a node must have links to all the specializations (or instances) of the
nodes that appeared in the concept sequence with relations that are equivalent to
(or subclasses of) the relation links from the root node to the packaged nodes in
the accepted concept sequence. The search for such a node undemeath the root
node is called concept refinement. This activity, which locates the concept that
is identified with the specific input speech, is central to the understanding in the
DMA parsing.

Processing of the example sentence “atamagaitai” is as follows: when the
lexical node “atama” is activated after the acceptance of the phonemic sequence

2See also Lytinen[1984], Riesbeck&Martin[1985] and Tomabech[1987a,b].
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<atam a>, then we activate the corresponding CC (Concept Class) node *HEAD
and spread the activation upward in the abstraction hierarchy. One of the ab-
stractions is the concept *BODY-LOCATION. At the beginning of understanding,
we have all first elements of the concept sequences (CSCs) P-Marked (just as
we did so with first elements of phonemic sequences). So *BODY-LOCATION was
P-Marked by the root node *HAVE-A-PAIN. Therefore, when *BODY-LOCATION
is activated from below, we have a collision of A-Marker and P-Marker. When
the collision happens, we send a P-Marker to the next element of the concept
sequence (i.e., *PP[GA]). This is continued and the last element *PAIN-SPEC gets
accepted after acceptance of <i t ai>. So we activate the root node *HAVE-A-PAIN.
One thing that happens (that we did not have at phonetic level) is that we per-
form the ‘concept refinement’!?, which is essentially what understanding in DMA
means. It involves identifying the specific instance of the accepted root concept
that represents the input to the understanding system. In our case, the memory
searches for the node *HAVE-A-HEADACHE (or creates it if non-existent yet), that
is undemeath *HAVE-A-PAIN and packages the nodes *HEAD, *PP[GA], *PAIN-
SPEC[UNSPEC] that are specific to the current input. Since concept sequences are
generic and attached to relatively higher nodes in abstraction hierarchy, it is this
concept refinement that specifies (or identifies) the specific input to the system.
After concept refinement, we now have the node *HAVE-A-HEADACHE activated,
and that is the result of the understanding. Of course, in the actual system, the

6.3 Memory Network Modification

Several different incidents trigger the modification of the memory network during
parsing:

e An individual concept is instantiated (i.e. an instance is created) under a
CC when the CC receives an A-Marker and a CI (an instance that wag
created by preceding utterances) is not existent. This instantiation is a
creation of a specific discourse entity which may be used as an existent
instance in the subsequent recognitions.

® A concept sequence instance is created under the accepted CSC. In other
words, if a whole concept sequence is accepted, we create an instance of

13Lytinen[1984] and Tomabechi[l987b] have detailed discussions of ‘concept refinement’,
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the sequence instantiating it with the specific CIs that were created by (or
identified with) the specific lexical inputs. This newly created instance is
linked to the accepted CSC with a instance relation link and to the instances
of the elements of the concept sequences by links labelled with their roles
given in the CSC.

e Links are created or removed in the CSI creation phase as a result of in-
voking inferences based on the knowledge attached to CSCs. For example,
when the parser accepts the sentence I went to the UMIST, an instance
of I is created under the CC representing /. Next, a CSI is created under
PTRANS. Since PTRANS entails that the agent is at the location, a lo-
cation link must be created between the discourse entities / and UMIST.
Such revision of the memory network is conducted by invoking knowledge
attached to each CSC.

Since modification of any part of the memory network requires some work-
load, certain costs are added to analyses which require such modifications.

6.4 Ambiguity Resolution Based on Cost Analysis

Ambiguity resolution in #DMTRANS is based on the calculation of the cost of
each parse. Costs are attached to each parse during the parse process.
Costs are attached when:

1. A CC with insufficient priming is activated,
2. A ClI is created under CC, and

3. Constraints imposed on CSC are not satisfied initially and links are created
or removed to satisfy the constraint.

Costs are attached to A-Markers when these operations are taken because
these operations modify the memory network and, hence, workloads are required.
Cost information is then carried upward by A-Markers. The parse with the least
cost will be chosen.

The cost of each hypothesis are calculated by:

n m

Ci=)_cj+_ consrainty + bias;
=0 =0

where C; is a cost of the i-th hypothesis, ¢j is a cost carried by an A-Marker

activating the j-th element of the CSC for the i-th hypothesis, constrainty is a
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cost of assuming k-th constraint of the j-th hypothesis, and bias; represents lexical
preference of the CSC for the i-th hypothesis. This cost is assigned to each CSC
and the value of C; is passed up by A-Markers if higher-level processing is
performed. At higher levels, each Cj may be a result of the sum of costs at
lower-levels.

It should be noted that this equation is very similar to the activation function
of most neural networks except for the fact our equation is a simple linear equation
which does not have threshold value, In fact, if we only assume the addition of
cost by priming at the lexical-level, our mechanism of ambiguity resolution would
behave much like connectionist models without inhibition among syntactic nodes
and excitation links from syntax to lexiconl4. However, the major difference
between our approach and the connectionist approach is the addition of costs for
instance creation and constraint satisfaction. We will show that these factors are
especially important in resolving structural ambiguities,

The following subsections describe three mechanisms that play a role in am-
biguity resolution. However, we do not claim that these are the only mechanisms
involved in the examples which follow!S.

6.5 Contextual Priming

In our system, some CC nodes designated as Contextual Root Nodes have a list
of thematically relevant nodes, C-Markers are sent to these nodes as soon as a
Contextual Root Node is activated. Thus each sentence and/or each word might
influence the interpretation of following sentences or words. When a node with
C-Marker is activated by receiving an A-Marker, the activation will be propagated
with no cost. Thus, a parse using such nodes would have no cost. However,
when a node without a C-Marker is activated, a small cost is attached to the
interpretation using that node.

In Tomabechi[1987a] the discussion of C-Marker propagation concentrated
on the resolution of word-level ambiguities. However, C-Markers are also prop-
agated to conceptual class nodes, which can Tepresent word-level, phrasal, or
sentential knowledge. Therefore, C-Markers can be used for resolving phrasal-
level and sentential-level ambiguities such as structural ambiguities. For exam-
Ple, atama ga itai literally means, ‘(my) head hurts.’ This normally is identified
with the concept sequences associated with the *have-a-symptom concept class

“We have not incorporated these factors primarily because structured P-Markers can play the
role of top-down priming; however, we may be incorporating these factors in the future,

YFor example, in one implementation of DMTRANS, we are using time-delayed decaying acti-
vations which resolve ambiguity even when two CI nodes are concurrently active,
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node, but if the preceding sentence is asita yakuinkai da (‘There is a board of
directors meeting tomorrow’), the *have-a-problem concept class node must be
activated instead. Contextual priming attained by C-Markers can also help re-
solve structural ambiguity in sentences like did you read about the problem with
the students? The cost of each parse will be determined by whether reading with
Students or problems with students is contextually activated. (Of course, many
other factors are involved in resolving this type of ambiguity.)

Our model can incorporate either C-Markers or a connectionist-type competi-
tive activation and inhibition scheme for priming. In the current implementation,
we use C-Markers for priming simply because C-Marker propagation is compu-
tationally less-expensive than connectionist-type competitive activation and inhi-
bition schemes!®. Although connectionist approaches can resolve certain types of
lexical ambiguity, they are computationally expensive unless we have massively
parallel computers. C-Markers are a resonable compromise because they are
sent to semantically relevant concept nodes to attain contextual priming without
computationally expensive competitive activation and inhibition methods.

6.6 Reference to the Discourse Entity

When a lexical node activates any CC node, a CI node under the CC node
is searched for (Tomabechi[1987a], Tomabechi&Tomita[1988b]). This activity
models reference to an already established discourse entity Webber{1983] in the
hearer’s mind. If such a CI node exists, the reference succeeds and this parse
will be attached with no cost. However, if no such instance is found, reference
failure results. If this happens, an instantiation activity is performed creating a
new instance with certain costs. As a result, a parse using newly created instance
node will be attached with some cost.

For example, if a preceding discourse contained a reference to a thesis, a
CI node such as THESISO05 would have been created. Now if a new input
sentence contains the word paper, CC nodes for *THESIS and *SHEET-OF-PAPER
are activated. This causes a search for CI nodes under both CC nodes. Since the
CI node THESIS00S will be found, the reading where paper means thesis will not
acquire a cost. However, assuming that there is not a CI node corresponding to a
sheet of paper, we will need to create a new one for this reading, thus incurring
a cost.

This does not mean that our model can not incorporate a connectionist model. The choice
of C-Markers over the connectionist approach is mostly due to computational cost. As we will
describe later, our model is capable of incorporating a connectionist approach.
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We can also use reference to discourse entities to resolve structural ambigu-
ities. In the sentence We sent her papers, if the preceding discourse mentioned
Yoshiko’s papers, a specific CI node such as YOSHIKO-PAPER003 representing
Yoshiko’s papers would have been created. Therefore, during the processing of
We sent her papers, the reading which means we sent papers to her needs to create
a CI node representing papers that we sent, incurring some cost for creating that
instance node. On the other hand, the reading which means we sent Yoshiko's
papers does not need to create an instance (because it was already created) so it
is costless. Also, the reading that uses paper as a sheet of paper is costly as we
have demonstrated above.

6.7 Constraints

Constraints are attached to each CSC. These constraints play important roles
during disambiguation. Constraints define relations between instances when sen-
tences or sentence fragments are accepted. When a constraint is satisfied, the
parse is regarded as plausible. On the other hand, the parse is less plausible
when the constraint is unsatisfied. Whereas traditional parsers simply reject a
parse which does not satisfy a given constraint, following the scheme adopted
in DMTRANS PLUS (Kitano, et al[1989]), PDMTRANS builds or removes links

The following example illustrates how this scheme resolves an ambiguity.
As an initial setting we assume that the memory network has instances of ‘man’
(MANT1) and ‘hand-gun’ (HAND-GUNT1) connected with a POSSES relation (i.e.
link). The input utterance is: “Mary picked up an Uzzi. Mary shot the man
with the hand-gun.” The second sentence is ambiguous in isolation and it is also
ambiguious if it is not known that an Uzzi is a machine gun. However, when it
is preceeded by the first sentence and if the hearer knows that Uzzi is a machine
gun, the ambiguity is drastically reduced. #DMTRANS hypothesizes and models
this disambiguation activity utilizing knowledge about world through the cost
recording mechanism described above,

During the processing of the first sentence, PDMTRANS creates instances of
‘Mary’ and “Uzzi’ and records them as active instances in memory (i.e., MARY]1
and UZZI1 are created). In addition, a link between MARY1 and UZZI1 is
created with the POSSES relation label. This link creation is invoked by triggering
side-effects (i.e., inferences) stored in the CSC representing the action of ‘MARY1
picking up the UZZI1’. We omit the details of marker passing (for A-, P-, and C-
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Markers) since it is described detail elsewhere (particulary in Tomabechi[1987b)).

When the second sentence comes in, an instance MARY 1 already exists and,
therefore, no cost is charged for parsing ‘Mary’!?. However, we now have three
relevant concept sequences (CSC’s!8):

CSC1: <*AGENT *SHOOT *OBJECT>
CSC2: <*AGENT *SHOOT *OBJECT *WITH *INSTRUMENT>
CSC3: <*PERSON *WITH *INSTRUMENT>

These sequences are activated when concepts in the sequences are activated
in order from below in the abstraction hierarchy. When the “man” comes in,
recognition of CSC3:(*PERSON *WITH *INSTRUMENT) starts. When the whole
sentence is received, we have two top-level CSCs (i.e., CSC1 and CSC2) accepted
(all elements of the sequences recognized). The acceptance of CSC1 is performed
through first accepting CSC3 and then substituting CSC3 for *OBJECT.

When the concept sequences are satisfied, their constraints are tested. A
constraint for CSC2 is (POSSES *AGENT *INSTRUMENT) and a constraint for
CSC3 (and CSC1, which uses CSC3) is (POSSES *PERSON *INSTRUMENT). Since
‘MARY1 PosSESS HAND-GUN1’ now has to be satisfied and there is no in-
stance of this in memory, we must create a POSSESS link between MARY1 and
HAND-GUNI1. A certain cost, say 10, is associated with the creation of this
link. On the other hand, MAN1 POSSESS HAND-GUNI is known in memory
because of an earlier sentence. As a result, CSC3 is instantiated with no cost and
an A-Marker from CSC3 is propagated upward to CSC1 with no cost. Thus, the
cost of instantiating CSC1 is 0 and the cost of instantiating CSC2 is 10. This
way, the interpretation with CSC1 is favored by our system.

7 Generation in #DMTRANS

SDMTRANS has two types of generation scheme: the explanation based gen-
eration and the marker propagation based generation (Kitano[1989], Kitano&-
Tomabechi[ms a]). Since the explanation based generation has been described
elsewhere (particulary in Tomabechi[1987a,b]), we will be concentrating on the
description of our marker propagation based generations.

0f course, ‘Mary’ can be ‘She’. The method for handling this type of pronoun reference was
already reported in Tomabechi[1987a,b] and we do not discuss it here.

"®As we can see from this example of CSC's, a concept sequence can be normally regarded as
a subcategorization list of a VP head. However, concept sequences are not restricted to such lists
and are actnally often at higher levels of abstraction representing MOP-like sequences.
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Two markers that are specific to generation are used. These are: (1) Gener-
ation Markers (G-Markers), which each contain a surface string and an instance
which the surface string represents and (2) Verbalization Markers (V-Markers),

to which the surface string refers. G-Markers are passed up through the memory
network. At a certain point of processing, surface strings of G-Markers are con-
catenated following the order of CSC and a final string of the utterance is created.
When an incremental sentence production is performed, V-Markers record part of
sentences which are already verbalized and anticipate next possible varbalization

The algorithm is shown below:
Let Lex, Con, Elem, and Seq be a set of lexical nodes, conceptual nodes, elements of
concept sequences, and concept sequences, respectively.

Translate(S)
For each phoneme pin§, do concurrently:
Activate(p),
For all ; and i
if Active(N;) AN; € Lex
for each n,, in trans(N;)
then
CreateGMarker(n,,),
GActivaze(i.s'a(n.,.))
if Active(N;) A N; € Con
then do concurrently:
Activate(isa(N,-)),
MakeTrans(N;)
if Active(e;.N;) A Predicted(e,-.M) A -Last(e;.N;)
then Predict(em N}
if Active(e;.N;) A Predicted(e,-.N.-) A Last(e;.N;)
then Accepi(N,), Activate(isa(N;))

MakeTrans(N;)
For each n,, in TL(N;)
do concurrently:
if N; € Lex
CreateGMarker(n,.), GActivate(isa(n,,.))
if N; € CSC
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InstantiateUtterance(ny,), GActivate(isa(ng,))

GActivate(e;.Ny)
GMark(e,-.N ,')
if VMarked(e;.Ni) A Unambiguous(e;.N;)
then
Verbalize(e;.N;)
if —~Last(e;.N;)
VMark(ej.1.N;)
if Last(e;.N;)
GActivate(isa(N;))
else
GActivate(isa(e;.N;))

where N; and e;.N; denote a node in the memory network indexed by ; and a j-th
element of a node N;, respectively. Active(N) is true iff a node or an element of a node
gets an A-Marker. Activate(N) sends A-Markers to nodes and elements given in the
argument. Unambiguous(N) tests if the role of the node is unambiguous. Verbalize(N)
produces phonolgical realization of the concept and it is send to the speech synthe-
sizer. CreateGMarker(N) creates a G-Marker containing a surface string and an instance
refered to. TL(N) returns a list of nodes connected under N by target language links.
InstantiateUtterance(N) concatenates the surface string of the G-Markers correspond-
ing to each element of the CSC and stores the result in a new G-Marker passed up to
higher abstraction links. Predict(N) moves a P-Marker to the next element of the CSC.
Predicted(N) is true iff a node or an element of a node gets a P-Marker. Pmark(N) puts a
P-Marker on a node or an element given in the argument. Last(N) is true iff an element
is the last element of the concept sequence. Accep#(N) creates an instance under N with
links which connect the instance to other instances. isa(N) and trans(N) return a list of
nodes and elements which are connected to the node in the argument by abstraction links
and translation links, respectively. isainw(N) returns a list of nodes and elements which
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are daughters of a node N.
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Figure 1: A Process of Parsing, Generation and Prediction

Let us now explain with a simple example (Figure-1). In the following explana-
tion, we will assume consecutive interpretation mode which translations are made
after a whole sentence is parsed. Simultaneous interpretation mode is described
in the next section. Suppose the input is I want to attend the conference; parsing
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is performed by activating each phoneme node and passing up activation through
the memory network. Multiple hypothesis for a possible word would be acti-
vated. Each lexical node corresonds to each hypothesis is activated and passing
up activation through the memory network. The generation process runs concur-
rently. When the phoneme sequence a [ is entered, corresponding phoneme nodes
and lexical nodes which encode phonological realization of the lexical entry gets
activated. If the lexical node has translation links to any Japanese lexical nodes,
these Japanese lexical nodes will be activated. Since there is no translation link
in the lexical node, activation is simply passed up and conceptual nodes, *I and
*Person (superclass of *I), gets activated as a part of the parsing process. At this
time, the program searches for a Japanese lexical entry for the concept 7 and finds
Watashi. A G-Marker is created and includes an instance (@1001) and a surface
string (watashi). The G-Marker is passed up through the memory network. This
process takes place for each word in the sentence. P-Markers are initially lo-
cated on the first element of CSCs for the source language (In this example, a
P-Marker is at *Person of <*Person *Want *To *Circumstance> and <*Person
*Attend *Conference>). V-Markers are located in the first element of CSCs for
the target language. V-Markers are important in the simultaneous interpretation
mode which will be described in the next section. When *Person gets an A-
Marker, the P-Marker is moved to *Want. When *Want gets an A-Marker then
the P-Marker is moved to *To and then to *Circumstances. The word attend, the,
conference would activate each element of the CSC (<*Person *Attend *Con-
ference>). Thus, the CSC is accepted and further an A-Marker propagation will
activate *Circumstance. Instantiation takes place when this sequence is accepted,
i.e. the P-Marker is placed on the last element of the sequence and that element
gets an A-Marker. As a result, a CI is created under the CC (*Want-Attend-
Conference) which is a root node of the accepted CSC, and linked with relevant
instances. Since a CSC for a Japanese expression, <(*Person *Role-Agent) *Con-
ference *Role-Goal *Attend *Want>, is stored under *Want-Attend-Conference,
a surface string for an utterance can be created by concatenating surface strings
stored in each G-Marker on each conceptual node (linearization). For instance,
G-Markers on *Conference and *Attend contain surface strings kaigi and sanka,
respectively. A result of the concatenation is Kaigi ni sanka shitai.'>. When we
only require a single sentence to be generated, we can use this sentence. This
surface string is, again, stored in a G-Marker and passed up to discourse-level
CSCs in order to generate multiple sentences. Activation is further passed up the
disourse knowledge layer and *Declare-Want-Attend and *Listen-Want-Attend

**Notice that optional elements, (*Person *Role-agent), are not concatenated to produce subject-
ellipsed sentence.
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are activated. As a result of this activation, the next possible utteraces *Assert-

Registration, *First-of-All, and </m a z u/> are predicted (shown as downward
arrows).

7.1 Concurrent Generation while Parsing

It is important to note that a massively parallel approach allows the generation
process to be executed concurrent to parsing. Of course, formulation of each
part of the sentence takes place after it is processed and its meaning is deter-
mined. However, it is concurrent in the sense that the generation process does
not wait until the entire parse is completed so that the translated utterance is
generated incrementally?®. Lexical selection and partial production of utterances
are conducted while parsing is in progress. Thus, in some input, a part of the
utterance can be generated before parsing of the entire sentence is completed. We
do this by verbalizing a surface string or phonological realization of the instance
whose role is determined, i.e. not ambiguous, and wait verbalization of ambigu-
ous instances until they gets diaambiguated. The part of the sentence which is
verbalized is recorded in a V-Marker and the V-Marker is moved to the next
possible verbalization elements. This will avoid redandunt verbalization. Only
the element with a V-Marker can be verbalized in order to ensure consistency of
the produced sentence.

Figure-2 indicate a temporal relationship between a series of words given to
the system and incremental generation in the target language. An incremental
translation and generation of the input, I want to attend the conference because
I am interested in Interpreting Telephony, results in two connected Japanese
sentences; (Watashi wa) kaigi ni sanka shitai. Toiunoha (watashi ha) uuyaku
denwa ni kyoumi ga arukara desu.. During the analysis of utterances, there is
a point for which the semantics of a part of the sentence is determined. For
instance, / (@1001) can only be a agent of the action when want is analyzed.
At this time, watashi ha (I Role-Agent) can be verbalized. A V-Marker which
is initially located on *Person is now moved to *Conference, which is the next
clement of the CSC. The next verbalization will not be triggered until because
comes in because the role of I want to attend the conference in the discourse
is still ambiguous. At this moment, *Want-Attend-Conference gets activated
and its superclass node including *Assert-Goal get activated. A P-Marker is
now placed on *Because in a CSC (<*Assent-Goal *Because *Assert-Reason>)

®Unlike an incremental generation of Kempen&Hoenkamp{1987] which assigns procedure to
each syntactic category, our algorithm uses markers to carry information. Also, concepts to be
expressed are incrementally determined as parsing progress.
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Input Utterance Translation

I

want watashi ha (I Role-Agent; This is ellipsed in the actual translation)
to

attend

the

conference

because kaigi ni sanka shitai (want to attend the conference)

I

am toiunoha (because)

interested watashi ha (I Role-Agent; This is ellipsed in the actual translation)
in

Interpreting Telephony tuuyaku denwa ni kyoumi ga arukara desu (interested in Interpreting Telephony)

Figure 2: Simultaneous Interpretation in #DMTRANS

and a V-Marker is still placed on *Assert-Goal of the corresponding Japanese
CSC (<*Assert-Goal *Touiunoha *Assert-Reason>). Activation of *Because will
determine the role of *Want-Attend-Conferece. The word because acts as a clue-
word which divides assertion of the speaker’s goal and her/his reasons for it as
represented in the CSC. in the discourse. Verbalization is now triggered; ie. [/
want to attend the conference is vocalized, and the V-Marker is moved the next
clement of the CSC. When a whole sentence is parsed, the entire meaning is made
clear and the rest of the sentence is verbalized. This example illustrate generation
in the target language at the earliest possible point. Although this is perfectly
legitimate Japanese, this is not the best Japanese translation as far as styles are
concerned. In order to overcome this problem, we made an option to generate
translation after waiting until a whole clause or a sentence is parsed so that it
provides options to generate the best style under the given discourse situation.
One option is to reverse the order of clauses, i.e. *Assert-Reason then *Assert-
Goal, which realizes perfectly fluent Japanese. One other example is when a
topicalization of the first clause is demanded, translation will be (Watashi ga) kaigi
ni sanka shitai noha (watashi ga) tuuyaku denwa ni kyoumi ga arukara desu (The
reason why I want to attend the conference is that I am interested in interpreting
telephony). Such constraints on generation scheduling are provided mostly from
discourse knowledge and temporal constraints. Our model is basically a language
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independent so that it is applicable to Japanese to English translation. For a
sentence such as Tuuyaku denwa ni kyoumi 8a arimasu node kaigi ni sanka shitai
nodesuga, ((I am) interested in interpreting telephony, so (I) want to attend the
conference), our algorithm can generate / am interested in interpreting telephony
before kaigi ni sanka shitai nodesuga (I want to attend the conference) is parsed.

7.2 Lexical Selections and Linearization Pattern Selections

Both generation lexicons and linearization pattems are selected by using either
C-Markers or the connectionist network.

The C-Marker passing scheme puts C-Markers to contextually relevant nodes
when a conceptual root node is activated. A G-Marker which goes through a
node without C-Marker will be added with larger cost than others. A pattern of
linearization is selected among CSCs linked with CC nodes representing the input
utterance such as *Want-Attend-Conference. The CC node is determined through
the cost-based ambiguity resolution scheme during parsing (Kitano, et al[1989)).
When there are multiple hypothesis for the specific CC node; i.e. when multiple
CSCs are linked with the CC, we adopt an idea of the cost-based disambiguation
to select one of them. We will add up the cost of each G-Marker used for each
linearization combined with pragmatic constraints which may be assigned to each
CSC and the preference for each CSC. The hypothesis with least cost will be
selected as a translated result.

The Connectionist Network will be adopted with some computational costs.
When a connectionist network is fully deployed, every node in the network is
connected with weighted links. A competitive excitation and inhibition process is
performed to select one hypothesis (Waltz&Pollack[ 1985]). Our cost-based model
can be used to determine initial activation strength of the each node. When a
lexical node is activated, associated CCs are activated according to the weights
of connections. Activation of CCs will propagate to lexical nodes of the target
language. A-Markers are created when CCs are activated and G-Markers are
created when any lexical node of the target language is activated. Although both
A-Markers and G-Markers carry cost information, its actual value changes over
time according to the change in the activation level of the lexical and conceptual
nodes. Activation levels of each lexical node can be decreased when (1) stronger
inhibitions are given, (2) excitation from the CSC is decreased due to the cost
atteched to the semantic constraint for the hypothesis, and (3) exictation level of
the corresponding CC node is decreased. Similary, activation levels of CSCs and
CCs change over time affecting and affected by excitation and inhibition of other
nodes. Final interpretation and translation in the target language are selected



27

through a winner-take-all mechanism.

8 Future Possibilities

8.1 Incorporation of Connectionist Model

Our model can incorporate connectionist processing for morphophonemic acti-
vations and ambiguity resolutions. In a connectionist network activation of one
node triggers interactive excitation and inhibition among nodes. Nodes which
get more activated will be primed more than others. When a parse uses these
more active nodes, no cost will be added to the hypothesis. On the other hand,
hypotheses using less activated nodes should be assigned higher costs. There is
nothing to prevent our mode! from integrating this idea. However, currently the
computational cost for such a network is rather prohibitive for real-time imple-
mentations. Readers should also be aware that DMA is a guided marker passing
algorithm in which markers are passed only along certain links whereas con-
nectionist models allow spreading of activation and inhibition virtually to any
connected nodes. We hope to integrate the DMA and the connectionist models
on a massively parallel hardware to demonstrate a real-time translation. We are
currently planning to integrate the #DMTRANS with the CMU/ATR neural-net
speech recognition system (Waibel, et a/[1989]) where our phonemic activations
are triggered from the lower layers of accoustic networks. The #DMTRANS will
be receiving a bundle of micro-accoustic features directly from the hidden layers
of the speech-recognition neural network instead of simply receiving a stream
of hypothesized phonemes. The network will have a uniform architecture from
the lowest accoustic signal processing to the higher discourse level knowledge.
The predictions from the various levels (discourse, domain specific, syntactic,
phonological, etc.) are propagated down to the lowest layers of the phoneme
recognitions for higher accuracy in recognitions and understanding.

8.2 Syntactic Constraint Propagations

Currently the sole syntactic knowledge in the #DMTRANS network is the linear
sequence of concepts represented as CSCs. In order to handle a tighter syntactic
processing two schemes have been tried. The first scheme is to utilize an external
syntactic recognizer to handle the syntactic knowledge as reported in Tomabechi-
&Tomita[1988a]. This scheme has an advantage of utilizing our existing grammar
(in LFG formalisms) that has been developed for our large-scale MT projects.
One problem with this scheme, however, is that the unification operation used
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for the syntactic recognition is sequential in nature and there will be little gain
from massive parallelism (Knight[1988]). Since we are assuming a massively .
parallel architecture as a basis of the BDMTRANS activity, this nature of unification
operation is discouraging.

The second method we have been experimenting with is what we call Massively-
Parallel Structured-Marker Passing (MSP) algorithm under our Massively-Parallel
Constraint Propagation (MCP) scheme (Tomabcchi&Tomita[ms]) and Head-driven
Massively-parallel Constraint Propagation (HMCP) scheme (Tomabechi&Levin[ms]).
Under these schemes, the markers that are propagated contain specific constraints
to be satisfied at different levels of abstractions with different types of marker
collisions. Currently we are experimenting with incorporating HPSG (Pollard&-
Sag[1987]) based syntactic constraint propagations in order to handle syntactic
constraints such as case and agreement. The advantage of this scheme is that
we will be able to handle a large proportion of syntactic knowledge formulated
under the unification-based grammar without the use of unifications replaced by
a MSP algorithm which is inherently massively parallel in nature,

8.3 Utterance-Case Acquisitions

We call specific pattems of utterances recorded in memory ‘utterance-cases’
(Kitano& Tomabechi[ms b]). It is different from Phrasal lexicon in the sense that
an ‘utterance-case’ is a memory structure that is integrated in the network provid-
ing specific constraints for certain combination of concepts and surface strings.
A large depository of such ‘utterance-cases’ will constrain the configurational
possibilities of specific concepts and morphological realizations in a contextually
sensitive manner. An ‘utterance-case’ will work to provide a restrictions dur-
ing a sentence understanding and generation where syntactic, semantic and even
pragmatic knowledge of discourse may not provide enough constraints.

Such a constraint is necessary especially for parsing noisy input and for gen-
erations. In parsing noisy streams of input, the retrieval of a specific ‘utterance-
case’ may provide a strong constraint on a specific phonemic configuration. In
terms of generations, since syntactic and semantic knowledge are maintained
without pragmatic restrictions, most generation programs in existence over-generate.
In other words, sentences that are grammatical and acceptable in terms of syn-
tax/semantics but are unacceptable to native speakers may be over-generated by
these generators. Under the MCP model described in the previous subsection, dur-
ing a parsing, a specific ‘utterance-case’ may be acquired that contains the current
syntactic, semantic and contextual environment that may be anchored to specific
morphological realizations. The constraints associated with the ‘utterance-case’
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may be propagated during the future parsing and generation so that an experience
of parsing one sentence can positively influence the parsing and generations in
the future.

8.4 Dedicated Hardware

As we have seen, the spreading activation guided marker passing algorithm is
massively parallel in nature. It leads to our understanding that #DMTRANS is
ideal for the new generation computer architectures where massively parallel
processings are supported from the hardware level (such as FMNN machines,
Tomabechi&Kitano[1989]). We currently have a version of #DMTRANS on
MULTILISP parallel lisp environment; however, we would like to see the sys-
tem running on much more massively parallel architecture?! which can support
the parallelism of every phonemic and concept sequence recognition performed
concurrently at all levels of abstractions and.triggered by multiple morphopho-
netic, phonological and semantic hypothesizations of continuous speech inputs.
Also, a dedicated VLSI chip for our algorithm is another viable possibility. Ac-
tually a part of the DMA algorithm has been implemented by using special VLSI
chips (Kitano[1988])).

9 Conclusion

We have reported an integration of phonological and contextual knowledge in
speech understanding in a massively parallel spreading activation marker passing
network. As we have seen, the method of marker passing spreading activation is
uniform from the phone level up to abstract thematic structures. Because a pho-
netic input stream can be hypothesized in multiple ambiguous and semantically
acceptable ways, we have seen the necessity of both phonological knowledge
and contextual knowledge participating during the course of direct memory ac-
cess translation. We have also described the ambiguity resolution scheme based
on cost analysis through 1) reference and instance creation; 2) constraint satisfac-
tion. Also we have seen that C-Marker passing is another method of contextual
disambiguation.

Parallel processing of concurrently active phonemic and conceptual sequences
seems solely attainable in a DMA style spreading activation architecture. In the
traditional build-and-store model, since the result of parsing is lost after the pro-

ASuch as neuro-computer type architectures and connection machine (Hillis{1985]) type
architectures.
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cessing of each sentence, the context for subsequent translations is hardly ever es-
tablished, whereas in our DMA model, context is naturally recorded as what is left
in memory after understanding previous sentences as well as what is being recog-
nized as parts of currently active concept sequences. With the explanatory gener-
ation mechanism added, the ®DMTRANS model of translating a speech input is an
extremely viable option for future massively parallel computers, in which mas-
sively parallel processing activity is hardware-supported??. The marker-passing
based DMA architecture is also straightforwardedly supported by the Frequency
Modulation Neural-Network machine architecture (Tomabechi&Kitano[1989]) in
which we can implement the massively parallel network from the hardware-level
to the abstract concept-level in a uniform architecture.

2Thus, although the massively parallel machines are yet to come to be utilized by the end-
users of speech translation systems, we have shown the theory and an implementation that when-
ever personal massively parallel computers are available, we hope to see SDMTRANS running for
business-people and for travelers in their personal machines.
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APPENDIX 1: Implementation

Speech recognition hardware was by Matsushita Research Institute and is used
in our system by the courtesy of the Institute. In addition to the firmware writ-
ten control codes, the low-level control program is written in ‘C’ for the device
hardware. Current implementation of #DMTRANS runs real-tinfe on HP9000
Al Workstations and is written in HP CommonLisp. The object-code of the
speech recognition control programs is directly called from inside the Common-
Lisp code. Also, non-real-time?* versions are implemented on IBM-RTs using
CMU-CommonLisp and MULTILISP. The parallelism of spreading activation is
simulated using lazy evaluations in CommonLisp versions. Parallelism in the
MULTILISP version is supported at the operating system level on ‘Mach’ (Rashid,
et al[1987]) at CMU. MULTILISP is described in Halstead[1985], which is a par-
allel lisp developed at MIT for Concert multi-processors and is now implemented
on the distributed operating system ‘Mach’ at CMU. Because MULTILISP is a true
parallel lisp, the MULTILISP version of #DMTRANS runs on any parallel hardware
that supports MULTILISP. MULTILISP has already been implemented on several
types of parallel computers including Concert, Multi-vaxens and Encores.

The speech synthesis module is a commercial product built by DEC called
DECTALK. It is capable of producing different types of voices (female, male,
young, old, etc.) and at varying pitches and can receive either phonemes or text
inputs. Since the generator outputs the text output, the input to DECTALX is a
text input and it produces the synthesized human voice.

APPENDIX 2: Distinctive Feature Matrix Using SPE

Below is the distinctive feature matrix used in our system for
Japanese:

P t (c)k b d gi(*) s z r
cons + + + + 4+ + 4+ + o+ o+ o+
syll R
son e T
high - - + - - + + - - -
back e T
low T

ZBy ‘real-time’ we mean that what is spoken into the microphone is translated into sentences
in the target language with a negligible delay.

#Non-real-time on IBM-RTs simply because hardware connections between RTs and the speech
recognition hardware are not currently supported and therefore, processings are done via network.




32 9 CONCLUSION

cor -+ 4+ - - 3+ - -
voice e S T S
cont e . S
nasal - -
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1
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APPENDIX3: Sample Runs

The audio tape-recording of sample runs of our system is available from the
authors by request.
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