Internal Use Only (3EA
BIGHEX N FE

TR-1-0220

F—& EEHEA GRS R B (L F %
— BWFIHHFER 7w P2 2 P CHBINAT AT XAQB—{L30E A —F —C O HZER

Quasi-Destructive Graph Unification with Structure-Sharing

Hideto Tomabechi *

1991.11

*Visiting Research Scientist from Carnegie Mellon University

安達　賢一
後に論文公開済み

Abstract

Graph unification remains the most expensive part of unification-
based natural language constraint processing. We focus on one speed-
up element in the design of unification algorithms: avoidance of copy-
ing of unmodified subgraphs. We propose a method of attaining such a
design through a method of structure-sharing which avoids log(d) over-
heads often associated with structure-sharing of graphs, without any
use of costly dependency pointers. The proposed scheme eliminates
redundant copying while maintaining the quasi-destructive scheme’s
ability to avoid over copying and early copying combined with its abil-
ity to handle cyclic structures without algorithmic additions. This
algorithm was originally developed by the author as a fast graph-
unification method in the joint ATR/CMU massively-parallel con-
straint propagation natural language processing project and is now
used in the conventional unification-based grammar parsing at ATR

and at CMU.

72 7 DE—LBE—LZFIH L 2 BATEEOLEIC B » CEIHHERE O R
ARy 7R TS, ARTRUEFHERIE—LiIcT — 2 L ~ v T
FKERNABOILFILEFIR L 7 2 7 OERFHEPEAT 2 HECD Wk
3o COBELTFRGELFIHRYEERIT B 0 2 H0EFEE LT
MPBAR I NS, v— T 2R B —RIbEhAB—{tFETcH b, BF
DHE—LIEA—F—FCHATBETH b, HPSG ~N—2 D AAZECE
DT —v—O T Y X L%2FHL BT Tl Wroblewski ®FED 3 f%
b b ERER OEFTRE 2R L 7o

ATR BEEREREFEVIFET
ATR Interpreting Telephony Research Laboratories
© (¥K) ATR HEEEREFDIZET 1991
©1991 by ATR Interpreting Telephony Research Laboratories

Contents

1 Q-D Method with Structure-Sharing 1
1.1 Motivationo 1
1.2 Quasi-Destructive Graph Unification 3
1.3 Q-D Copying with Structure-Sharing 10
14 Experiments. e e 14
1.5 Discussion: e e 16
1.6 Conclusion o e e e e e 19

2 BUERIE—{L 2 OUERUERI E — b~ 22
21 BEASHENECHT 77 70B—{bof%H 22
22 7I77HE—LoMER -#HEE GEHEE) 22
23 WRE7 7 7HEACFECETDZZEE23
24 Pereira ®IFE L e e 23
25 Kartunnen ™3FEE L e 24
2.6 Wroblewski ®FRHE: e 24
2.7 BEAFRZ I 7H—ETATY X a0BE 25
2.8 ERELRIEOEIO 25
2.9 B—EoLB. 25
210 BHEFTEDART 26
211 EEED7I7OHAEIL .. 26
212 RERADHE . . . e e 26
2.13 Over-Copying & Early-Copying 26
2.14 HEFTREREESE (Incremental Copying) OZAVEMINGE 27
215 FARBITTEE . L . e 27
216 v —7HB BRI v I vy— =7+ —-F 27
217 W ERERIT R X BB .. . oL 29
2.18 WEIZRUERIEERI T A Y A DB—{bICE T 2. 30
219 7o 7H—bicBs 37— 2EHoRAE: BH 30

ii

CONTENTS

2.20 /NEDFE (Coling’0) v v v 30
2.21 Emele ®3FEE (ACL91) 31
2.22 IGEZEUEBUERITFIEC 31T REEOIH - AW AREZF 32
2.23 WfAZEAEBHRAITFIRIC B T D& OE - TA T) XLDZEE . 32
2.24 R IL (Data-Structure Sharing) O—o0RRE&A 33
2.25 Bottom HHF K X 2FEOFREE : (WS O20FER) 33

226 BEER -« o e e e e e e e e e 33

Chapter 1

Q-D Method with

Structure-Sharing

1.1 Motivation

Despite recent efforts in improving graph unification algorithms, graph uni-
fication remains the most expensive part of parsing, both in time and space.
ATR’s latest data from the SL-TRANS large-scale speech-to-speech trans-
lation project ([Morimoto, et al, 1990]) show 80 to 90 percent of total pars-
ing time is still consumed by graph unification where 75 to 95 percent of
time is consumed by graph copying functions.! Quasi-Destructive (Q-D)
Graph Unification ([Tomabechi, 1991]) was developed as a fast variation of
non-destructive graph unification based upon the notion of time-sensitive
‘quasi-destruction’ of node structures. The Q-D algorithm was proposed
based upon the following accepted observation about graph unification:

Unification does not always succeed.

Copying is an expensive operation.

The design of the Q-D scheme was motivated by the following two principles
for fast graph unification based upon the above observations:

o Copying should be performed only for successful unifications.

! Based on unpublished reports from Knowledge and Data Processing Dept, ATR. The
observed tendency was that sentences with very long parsing time requiring a large number
of unification calls (over 2000 top-level calls) consumed extremely large proportion (over
93 percent) of total parsing time for graph unification. Similar data reported in [Kogure,
1990].

2 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

¢ Unification failures should be found as soon as possible.

and eliminated Over Copying and Early Copying (as defined in [Tomabechi,
1991]2) and ran about twice the speed of [Wroblewski, 1987]’s algorithm.3
In this paper we propose another design principle for graph unification based
upon yet another accepted observation that:

Unmodified subgraphs can be shared.

At least two schemes have been proposed recently based upon this observa-
tion (namely [Kogure, 1990] and [Emele, 1991]); however, both schemes are
based upon the incremental copying scheme and as described in [Tomabechi,
1991] incremental copying schemes inherently suffer from FEarly Copying as
defined in that article. This is because, when a unification fails, the copies
that were created up to the point of failure are wasted if copies are created
incrementally. By way of definition we would like to categorize the shar-
ing of structures in graphs into Feature-Structure Sharing (F'S-Sharing) and
Data-Structure Sharing (DS-Sharing). Below are our definitions:

o Feature-Structure Sharing: Two or more distinct paths within a
graph share the same subgraph by converging on the same node —
equivalent to the notion of structure sharing or reentrancy in linguistic
theories (such as in [Pollard and Sag, 1987]).

¢ Data-Structure Sharing: Two or more distinct graphs share the
same subgraph by converging on the same node — the notion of structure-
sharing at the data structure level. [Kogure, 1990] calls copying of such
structures Redundant Copying.

2Namely,

e Over Copying: Two dags are created in order to create one new dag. - This
typically happens when copies of two input dags are created prior to a destructive
unification operation to build one new dag.

¢ Early Copying: Copies are created prior to the failure of unification so that copies
created since the beginning of the unification up to the point of failure are wasted.

Wroblewski defined Early Copying as follows: “The argument dags are copied before
unification started. If the unification fails then some of the copying is wasted effort”
and restricts early copying to cases that only apply to copies that are created prior to
a unification. Our definition of Early Copying includes copies that are created during a
unification and created up to the point of failure which were uncovered by Wroblewski’s
definition.

8Recent experiments conducted in the Knowledge and Data Processing Dept. of ATR
shows the algorithm consistently runs at about 40 percent of the elapsed time of Wrob-
lewski’s algorithm with its SL-TRANS large-scale spoken-language translation system
(with over 10,000 grammatical graph nodes).

1.2. QUASI-DESTRUCTIVE GRAPH UNIFICATION 3

Virtually all graph-unification algorithms support F'S-Sharing and some sup-
port DS-Sharing with varying levels of overhead. In this paper we propose a
scheme of graph unification based upon a quasi-destructive graph unification
method that attains DS-Sharing with virtually no overhead for structure-
sharing. Henceforth, in this paper, structure-sharing refers to DS-sharing
unless otherwise noted. We will see that the introduction of structure-
sharing to quasi-destructive unification attains another two-fold increase in
run-time speed. The graphs handled in the scheme can be any directed
graph and cyclicity is handled without any algorithmic additions.
Our design principles for achieving structure-sharing in the quasi-destructive

scheme are:

¢ Atomic and Bottom nodes can be shared* — Atomic nodes can
be shared safely since they never change their values. Bottom nodes
can be shared® since bottom nodes are always forwarded to some other
nodes when they unify.

e Complex nodes can be shared unless they are modified - com-
plex nodes can be considered modified if they are a target of the for-
warding operation or if they received the current addition of comple-
ment arcs (into comp-arc-list in quasi-destructive scheme).

By designing an algorithm based upon these principles for structure-
sharing while retaining the quasi-destructive nature of [Tomabechi, 1991]’s
algorithm, our scheme eliminates Redundant Copying while eliminating both
FEarly Copying and Over Copying,.

1.2 Quasi-Destructive Graph Unification

We would first like to describe the quasi-destructive (Q-D) graph unification
scheme which is the basis of our scheme. As a data structure, a node is
represented with five fields: type, arc-list, comp-arc-list, forward, copy, and
generation.® The data-structure for an arc has two fields, ‘label’ and ‘value’.
‘Label’ is an atomic symbol which labels the arc, and ‘value’ is a pointer to
a node structure.

* Atomic nodes are nodes that represent atomic values, Bottom nodes are nodes that
represent variables.

5 As long as the unification operation is the only operation to modify graphs.

®Note that [Tomabechi, 1991] used separate mark fields for comp-arc-list, forward, and
copy; currently however, only one generation mark is used for all three fields. Thanks are
due to Hidehiko Matsuo of Toyo Information Systems for suggesting this.

4 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

NODE

e o e +

l type !

o +

| arc-list |

e +

| comp-arc-list |

B e e +

| forward | ARC
i e e + e +
I copy | I label |
oo e e + o e +
| generation | | value |
o e -+ oo e e e +

Figure 1.1: Node and Arc Structures

The central notion of the Q-D algorithm is the dependency of the repre-
sentational content on the global timing clock (or the global counter for the
current generation of unifications). Any modification made to comp-arc-list,
forward, or copy fields during one top-level unification can be invalidated
by one increment operation on the global timing counter. Contents of the
comp-arc-list, forward and copy fields are respected only when the genera-
tion mark of the particular node matches the current global counter value.
Q-D graph unification has two kinds of arc lists: 1) arc-list and 2) comp-
arc-list. Arc-list contains the arcs that are permanent (i.e., ordinary graph
arcs) and comp-arc-list contains arcs that are only valid during one top-level
graph unification operation. The algorithm also uses two kinds of forward-
ing links, i.e., permanent and temporary. A permanent forwarding link is
the usual forwarding link found in other algorithms ([Pereira, 1985], [Wrob-
lewski, 1987], etc). Temporary forwarding links are links that are only valid
during one top-level unification. The currency of the temporary links is de-
termined by matching the content of the generation field for the links with
the global counter; if they match, the content of this field is respected”. As
in [Pereira, 1985], the Q-D algorithm has three types of nodes: 1) :atomic,

"We do not have a separate field for temporary forwarding links; instead, we designate
the integer value 9 to represent a permanent forwarding link. We start incrementing the
global counter from 10 so whenever the generation mark is not 9, the integer value must
equal the global counter value to respect the forwarding link.

1.2. QUASI-DESTRUCTIVE GRAPH UNIFICATION 5

2) :bottom®, and 3) :complex. :atomic type nodes represent atomic symbol
values (such as ‘Noun’), :bottom type nodes are variables and :complex type
nodes are nodes that have arcs coming out of them. Arcs are stored in the
arc-list field. The atomic value is also stored in the arc-list if the node type
is :atomic. :bottom nodes succeed in unifying with any nodes and the result
of unification takes the type and the value of the node that the :bottom node
was unified with. :atomic nodes succeed in unifying with :bottom nodes or
:atomic nodes with the same value (stored in the arc-list). Unification of
an :atomic node with a :complex node immediately fails. :complex nodes
succeed in unifying with :bottom nodes or with :complex nodes whose sub-
graphs all unify.? Figure 2 is the central quasi-destructive graph unification
algorithm and Figure 3 is the dereferencing!® function. Figure 4 shows the
algorithm for copying nodes and arcs (called from unify0) while respecting
the contents of comp-arc-lists.

8Bottom is called leaf in Pereira’s algorithm.

9 Arc values are always nodes and never symbolic values because :atomic and :bottom
nodes may be (or become) pointed to by multiple arcs (i.e, FS-Sharing) depending on
grammar counstraints, and we do not want arcs to contain terminal atomic values.

10Dereferencing is an operation to recursively traverse forwarding links to return the
target node of forwarding.

6 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

I QUASI-DESTRUCTIVE GRAPH UNIFICATION l

FUNCTION unify-dg(dgl,dg2);
result + catch with tag *unify-fail
calling unify0(dgl,dg2);
increment *unify-global-counter*; ;; starts from 10 !
return(result);
END;

FUNCTION unify0(dgl,dg2);
if *T* = unify1(dgl,dg2); THEN
copy — copy-dg-with-comp-arcs(dgl);
return(copy);
END;

FUNCTION unifyl (dgl-underef,dg2-underef);
dgl « dereference-dg(dgi-underef);

dg2 — dereference-dg(dg2-underef);

IF (dgl.copy is non-empty) THEN
dgl.copy « nil; ;; cutoff uncurrent copy

IF (dg2.copy is non-empty) THEN
dg2.copy « nil;

IF (dgl = dg2)"*THEN
return (FT*);

ELSE IF (dgl.type = :bottom) THEN
forward-dg(dgl,dg2,:temporary);
return(P*¥T*);

ELSE IF (dg2.type = :bottom) THEN
forward-dg(dg2,dgl,temporary);
return (*T*);

ELSE IF (dgl.type = :atomic AND

dg2.type = :atomic) THEN
IF (dgl.arc-list = dg2.arc-list)** THEN
forward-dg(dg2,dgl,:temporary);
return (¥ T#);
ELSE throw* with keyword *unify-fail;
ELSE IF (dgl.type = :atomic OR.
dg2.type = :atomic) THEN
throw with keyword ’unify-fail;

ELSE shared « intersectarcs(dgl,dg2);

FOR EACH arc IN shared DO
unifyl(destination of
the shared arc for dgl,
destination of
the shared arc for dg2);
forward-dg(dg2,dgl,temporary);'®
new « complementarcs(dg2,dgl);*®
IF'" (dgl.comp-arc-list is non-empty) THEN

1.2. QUASI-DESTRUCTIVE GRAPH UNIFICATION 7

IF (dgl.generation = *unify-global-counter*) THEN
FOR EACH arc IN new DO
push arc to dgl.comp-arc-list;
ELSE dgl.comp-arc-list + nil;
ELSE dgl.generation «— *unify-global-counter*;
dgl.comp-arc-list + new;
return (FT%);
END;

Figure 2: The Q-D Unification Functions

I GRAPH NODE DEREFERENCING I

FUNCTION dereference-dg(dg);
forward-dest « dg.forward;
IF (forward-dest is non-empty) THEN
IF (dg.generation = *unify-global-counter* OR
dg.generation = 9) THEN
dereference-dg(forward-dest);
ELSE dg.forward « nil; ;; make it GCable
return(dg);
ELSE return(dg);
END;

Figure 3: The Q-D Dereference Function

The functions Complementarcs(dgl,dg2) and Intersectarcs(dgl,dg2) re-
turn the set-difference (the arcs with labels that exist in dgl but not in dg2)
and intersection (the arcs with labels that exist both in dgl and dg2). Dur-
ing the set-difference and set-intersection operations, the content of comp-
arc-lists are respected as parts of arc lists if the generation mark matchs the
current value of the global timing counter. Forward(dgl, dg2, :forward-type)

119 indicates a permanent forwarding link.

2Bqual in the ‘eq’ sense. Because of forwarding and cycles, it is possible that dgl and
dg2 are ‘eq’.

13 Arc-list contains atomic value if the node is of type :atomic.

14 Catch/throw construct; i.e., immediately return to unify-dg.

15 This will be executed only when all recursive calls into unifyl have succeeded. Oth-
erwise, a failure would have caused an immediate return to unify-dg.

'8 Complementarcs(dg2,dgl) was called before unifyl recursions in [Tomabechi, 1991],
Currently it is moved to after all unifyl recursions successfully return. Thanks are due to
Marie Boyle of University of Tuebingen for suggesting this.

17 This check was added after [Tomabechi, 1991] to avoid over-writing the comp-arc-list
when it is written more than once within one unify0 call. Thanks are due to Peter Neuhaus
of Universitat Karlsruhe for reporting this problem.

8 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

puts (the pointer to) dg2 in the forward field of dgl. If the keyword in the
function call is :temporary, the current value of the *unify-global-counter*
is written in the generation field of dgl. If the keyword is :permanent, 9 is
written in the generation field of dgl.!® The temporary forwarding links are
necessary to handle reentrancy and cycles. As soon as unification (at any
level of recursion through shared arcs) succeeds, a temporary forwarding
link is made from dg2 to dgl (dgl to dg2 if dgl is of type :bottom). Thus,
during unification, a node already unified by other recursive calls to unifyl
within the same unify0 call has a temporary forwarding link from dg2 to
dgl (or dgl to dg2). As a result, if this node becomes an input argument
node, dereferencing the node causes dgl and dg2 to become the same node
and unification immediately succeeds. Thus, a subgraph below an already
unified node will not be checked more than once even if an argument graph
has a cycle.!®

8The Q-D algorithm itself does not require any permanent forwarding; however, the
functionality is added because some grammar reader modules that read the path equation
specifications into directed graph feature-structures use permanent forwarding to merge
the additional grammatical specifications into a graph structure.

19 Also, during copying subsequent to a successful unification, two arcs converging into
the same node will not cause overcopying simply because if a node already has a copy
then the copy is returned.

1.2. QUASIDESTRUCTIVE GRAPH UNIFICATION

| QUASI-DESTRUCTIVE COPYING |

FUNCTION copy-dg-with-comp-arcs(dg-underef);
dg — dereference-dg(dg-underef);
IF (dg.copy is non-empty AND
dg.copy.generation®* = *unify-global-counter*) THEN
return(dg.copy);*!
ELSE IF (dg.type = :atomic) THEN
newcopy + create-node();*?
newcopy.type « :atomic;
newcopy.arc-list « dg.arc-list;
newcopy.generation «— *unify-global-counter*;
dg.copy +— newcopy;
return(newcopy);
ELSE IF (dg.type = :bottom) THEN
newcopy «— create-node();
newcopy.type « :bottom;
newcopy.generation «— *unify-global-counter*;
dg.copy + newcopy;
return(newcopy);
ELSE
newcopy «— create-node();
newcopy.type «+ :complex;
newcopy.generation «— *unify-global-counter®;
dg.copy — newcopy;2®
FOR ALL arc IN dg.arc-list DO
newarc « copy-arc-and-comp-arc{arc);
push newarc into newcopy.arc-list;
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
FOR. ALL comp-arc IN dg.comp-arc-list DO
newarc « copy-arc-and-comp-arc{comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list «— nil;
return (newcopy);
END;

FUNCTION copy-arc-and-comp-arc(input-arc);
label «— input-arc.label;
value « copy-dg-with-comp-arcs(input-arc.value);
return a new arc with label and value;

END;

Figure 4: Node and Arc Copying Functions

10 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

1.3 Q-D Copying with Structure-Sharing

In order to attain structure-sharing during Quasi-Destructive graph unifi-
cation, no modification is necessary for the unification functions described
in the previous section. This section describes the quasi-destructive copying
with structure-sharing which replaces the original copying algorithm. Since
unification functions are unmodified, the Q-D unification without structure-
sharing can be mixed trivially with the Q-D unification with structure-
sharing if such a mixture is desired (by simply choosing different copying
functions). Informally, the Q-D copying with structure-sharing is performed
in the following way. Atomic and bottom nodes are shared. A complex node
is shared if no nodes below that node are changed (a node is considered
changed by being a target of forwarding or having a valid comp-arc-list). If
a node is changed then that information is passed up the graph path using
multiple-value binding facility when a copy of the nodes are recursively re-
turned. Two values are returned, the first value being the copy (or original)
node and the second value being the flag representing whether any of the
node below that node (including that node) has been changed. Atomic and
bottom nodes are always shared; however, they are considered changed if
they were a target of forwarding so that the ‘changed’ information is passed
up. If the complex node is a target of forwarding, if no node below that node
is changed then the original complex node is shared; however, the ‘changed’
information is passed up when the recursion returns. Below is the actual
algorithm description for the Q-D copying with structure-sharing.??

20Tc., the ‘generation’ field of the node stored in the ‘copy’ field of the ‘dg’ node.
The algorithm described in [Tomabechi, 1991] used ‘copy-mark’ field of ‘dg’. Currently
‘generation’ field replaces the three mark field described in the article.

“1.e., the existing copy of the node.

?2Creates an empty node structure.

23This operation to set a newly created copy node into the ‘copy’ field of ‘dg’ was done
after recursion into subgraphs in the algorithm description in [Tomabechi, 1991] which
was a cause of infinite recursion with a particular type of cycles in the graph. By moving
up to this position from after the recursion, such a problem can be effectively avoided.
Thanks are due to Peter Neuhaus for reporting the problem.

24One thing to be noted is that when a complex node is a point of convergence, and when
there was no changein the subgraph, the provided algorithm will perform the unnecessary
recursion for the second traversal through the arc pointing to the convergent node. Since
there is no change in the complex graph, this will not change the result in anyway, but if the
complex graph is very large it could be costly. If there was a change in the complex graph
this will not happen since the convergent node will be copied in the first traversal of the

1.3. Q-D COPYING WITH STRUCTURE-SHARING 11

| Q-D COPYING WITH STRUCTURE-SHARING |

FUNCTION copy-dg-with-comp-arcs-share(dg-underef);
dg « dereference-dg(dg-underef);
IF (dg.copy is non-empty AND
dg.copy.generation = *unify-global-counter*) THEN
values(dg.copy, :changed);*®
ELSE IF (dg = dg-underef) THEN
copy-node-comp-not-forwarded(dg);
ELSE copy-node-comp-forwarded(dg);
END;

FUNCTION copy-node-comp-not-forwarded(dg);
IF (dg.type = :atomic) THEN values(dg,nil);
;; return original dg with ‘no change’ flag.
ELSE IF (dg.type = :bottom) THEN values(dg,nil);
ELSE
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
newcopy «— create-node();
newcopy.type «— :complex;
newcopy.generation «— *unify-global-counter*;
dg.copy — newcopy;
FOR ALL axc IN dg.arc-list DO
newarc
« first value of copy-arc-and-comp-arc-share(arc);
push newarc into newcopy.arc-list;
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc
« first value of copy-arc-and-comp-arc-share(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list «— nil;
values(newcopy,:changed);
ELSE
state «— nil, arcs — nil;
dg.copy +— dg?¢, dg.generation — *unify-global-counter®;
FOR ALL arc IN dg.arc-list DO
newarc,changed «— copy-arc-and-comp-arc-share(arc); 2
push newarc into arcs;
IF (changed has value) THEN
state «— changed;

convergent arc and that copy is simply returned in the second traversal of the convergent
arc. One way to avoid it is to local write :changed or :unchaged information into the :copy
field of the node and immediately return the input node with either :changed or :unchaged
flag, so that such information will be written in the first traversal of the convergent arc
and utilized in the second traversal of the convergent arc. This was suggested by Masaaki
Nagata of ATR and has been included in their implementation of the algorithm.

12 CHAPTER 1. @Q-D METHOD WITH STRUCTURE-SHARING

IF (state has value) THEN
newcopy « create-node();
newcopy.type « :complex;
newcopy.generation « *unify-global-counter*;
newcopy.arc-list « arcs;
dg.copy « newcopy;
values(newcopy,:changed);

ELSE dg.copy « nil; ;;reset copy field

values(dg,nil);
END;

1.3. Q-D COPYING WITH STRUCTURE-SHARING

FUNCTION copy-node-comp-forwarded(dg);
IF (dg.type = :atomic) THEN values(dg,:changed);
;; return original dg with ‘changed’ flag.
ELSE IF (dg.type = :bottom) THEN values(dg,:changed);
ELSE
IF (dg.comp-arc-list is non-empty AND
dg.generation = *unify-global-counter*) THEN
newcopy «— create-node();
newcopy.type < :complex;
newcopy.generation «— *unify-global-counter®;
dg.copy + newcopy;
FOR ALL arc IN dg.arc-list DO
newarc
«~ first value of copy-arc-and-comp-arc-share(arc);
push newarc into newcopy.arc-list;
FOR ALL comp-arc IN dg.comp-arc-list DO
newarc
« first value of
copy-arc-and-comp-arc-share(comp-arc);
push newarc into newcopy.arc-list;
dg.comp-arc-list « nil;
values(newcopy,:changed);
ELSE
state < nil, arcs — nil;
dg.copy « dg, dg.generation «— *unify-global-counter*;
FOR ALL arc IN dg.arc-list DO
newarc,changed + copy-arc-and-comp-arc-share(arc);
push newarc into arcs;
IF (changed has value) THEN
state «— changed;
IF (state has value) THEN
newcopy « create-node();
newcopy.type « :complex;
newcopy.generation « *unify-global-counter*;
newcopy.arc-list « arcs;
dg.copy «+ newcopy;
values(newcopy,:changed);
ELSE dg.copy « nil;
values(dg,changed); ;; considered changed
END;

FUNCTION copy-arc-and-comp-arc-share(input-arc);
destination,changed
+ copy-dg-with-comp-arcs-share(input-arc.value);
IF (changed has value) THEN
label « input-arc.label;
value «— destination;

13

14 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

values(a new arc with label and value,:changed);
ELSE values(input-arc,nil); ;; return original arc

END;

Figure 5: Structure-Sharing Copying Functions

1.4 Experiments

Table 1 shows the results of our experiments using an HPSG-based sam-
ple Japanese grammar developed at ATR for a conference registration tele-
phone dialogue domain. ‘Unifs’ represents the total number of top-level
unifications during a parse (i.e, the number of calls to the top-level ‘unify-
dg’, and not ‘unify1’)?8, ‘USrate’ represents the ratio of successful unifica-
tions to the total number of unifications. We parsed each sentence three
times on a Symbolics 3620 using three unification methods, namely, Wrob-
lewski’s algorithm, a quasi-destructive method without structure-sharing,
and a quasi-destructive method with structure-sharing. We took the short-
est elapsed time for each method (W’ represents Wroblewski’s algorithm
with a modification to handle cycles and variables?®, ‘QD’ represents the
quasi-destructive method without structure-sharing, and ‘QS’ represents the
proposed method with structure-sharing). Data structures are the same for
all three unification methods except for additional fields for comp-arc-list in
the Q-D methods. Same functions are used to interface with Earley’s parser
and the same subfunctions are used wherever possible (such as creation and

#Values’ return multiple values from a function. In our algorithm, two values are
returned. The first value is the result of copying, and the second value is a flag indicating
if there was any modification to the node or to any of its descendants.

2 Temporarily set copy of the dg to be itself.

25 Multiple-value-bind call. The first value is bound to ‘newarc’, and the second value is
bound to ‘changed’.

Z8Unify1 is called several times the number of unify-dg in the grammar used in the
experiment. For example unifyl was called 3299 times for sentence 9 when unify-dg was
called 480 times.

*Qycles can be handled in Wroblewski’s algorithm by checking whether an arc with
the same label already exists when arcs are added to a node. And if such an arc already
exists, we destructively unify the node which is the destination of the existing arc with
the node which is the destination of the arc being added. If such an arc does not exist, we
simply add it. ([Kogure, 1989]). Thus, cycles can be handled very cheaply in Wroblewski’s
algorithm. Handling variables in Wroblewski’s algorithm is basically the same as in our
algorithm (i.e., Pereira’s scheme), and the addition of this functionality can be ignored
in terms of comparison to our algorithm. Our algorithm does not require any additional
scheme to handle cycles in input dgs.

1.4. EXPERIMENTS 15

access of arcs) to minimize the differences that are not purely algorithmic.
‘Number of Copies’ represents the number of nodes created during each
parse. ‘Number of Arcs’ represents the number of arcs created during each
parse.

sent# Unifs USrate Elapsed time(sec) Num of Copies Num of Arcs
W QD Qs W QD Qs W QD Qs

1 6 0.50 0.20 0.15 0.13 107 79 18 113 123 36
2 101 0.34 2.53 1.16 1.10 2285 1317 407 2441 1917 760
3 18 0.22 0.40 0.20 0.20 220 111 26 182 183 62
4 71 0.55 2.20 1.24 0.91 2151 1564 514 2408 2191 879
5 305 0.37 13.78 6.51 3.65 9092 5224 1220 9373 7142 2272
6 59 0.27 3.20 0.64 0.50 997 549 97 874 797 204
7 6 0.50 0.21 0.13 0.11 107 79 18 113 123 36
8 81 0.51 3.17 1.59 1.21 2406 1699 401 2572 2334 710
9 480 0.37 24.62 8.11 5.74 15756 8986 1696 17358 12427 3394
10 51 0.41 40.15 16.39 8.80 18822 11234 2737 20323 1B375 5116
11 109 0.45 4.60 1.71 1.41 2913 1938 555 3089 2712 992
12 428 0.33 19.57 8§.24 4.45 13363 7491 1586 14321 10218 3059
i3 559 0.39 37.76 11.74 6.23 17741 9417 2483 19014 13055 4471
i4 52 0.38 3.81 0.90 0.50 047 693 107 893 283 199
15 77 0.55 2.50 1.57 0.93 2137 1513 428 2436 2185 793
16 77 0.55 2.53 1.57 0.90 2137 1513 428 2436 2185 793

total 2984 161.23 61.85 36.77 91181 53407 12721 97946 73950 23776

(% for total) 100% 38.4% 22.8% 100Y% 58.6% 14% 1007, 76% 24Y%

Table 1.1: Comparison of three methods

We used Earley’s parsing algorithm for the experiment. The Japanese
grammar is based on HPSG analysis ([Pollard and Sag, 1987]) covering phe-
nomena such as coordination, case adjunction, adjuncts, control, slash cate-
gories, zero-pronouns, interrogatives, WH constructs, and some pragmatics
(speaker, hearer relations, politeness, etc.) ([Yoshimoto and Kogure, 1989]).
The grammar covers many of the important linguistic phenomena in conver-
sational Japanese. The grammar graphs which are converted from the path
equations contain 2324 nodes.>* We used 16 sentences from a sample tele-

phone conversation dialog which range from very short sentences (one word,

%0 Disjunctive equations are preprocessed by the grammar reader module to expand into
cross-multiples, whereas in ATR’s SL-TRANS system, Kasper’s method {[Kasper, 1987])
to handle disjunctive feature-structures is adopted.

16 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

i.e., iie ‘no’) to relatively long ones (such as soredehakochirakarasochirani-
tourokuyoushiwoookuriitashimasu ‘In that case, we [speaker] will send you
[hearer] the registration form.”). Thus, the number of (top-level) unifications
per sentence varied widely (from 6 to over 500).

1.5 Discussion:

Pereira ([Pereira, 1985]) attains structure-sharing by having the result graph
share information with the original graphs by storing changes to the ‘envi-
ronment’. There will be the log(d) overhead (where d is the number of
nodes in a graph) associated with Pereira’s method that is required during
node access to assemble the whole graph from the ‘skeleton’ and the up-
dates in the ‘environment’. In the proposed scheme, since the arcs directly
point to the original graph structures there will be no overhead for node
accesses. Also, during unification, since changes are stored directly in the
nodes (in the quasi-destructive manner) there will be no overhead for re-
flecting the changes to graphs during unification. We share the principle
of storing changes in a restorable way with [Karttunen, 1986)’s reversible
unification and copy graphs only after a successful unification. However,
Karttunen’s method does not use structure-sharing. Also, In Karttunen’s
method3!, whenever a destructive change is about to be made, the attribute
value pairs3? stored in the body of the node are saved into an array. The
dag node structure itself is also saved in another array. These values are
restored after the top level unification is completed. (A copy is made prior
to the restoration operation if the unification was a successful one.) Thus,
in Karttunen’s method, each node in the entire argument graph that has
been destructively modified must be restored separately by retrieving the
attribute-values saved in an array and resetting the values into the dag
structure skeletons saved in another array. In the Q-D method, one in-
crement to the global counter can invalidate all the changes made to the
nodes. [Karttunen and Kay, 1985] suggests the use of lazy evaluation to
delay destructive changes during unification. [Godden, 1990] presents one
method to delay copying until a destructive change is about to take place.
Godden uses delayed closures to directly implement lazy evaluation during
unification. While it may be conceptually straightforward to take advantage

31The discussion of Karttunen’s method is based on the D-PATR implementation on
Xerox 1100 machines ([Karttunen, 1986}).
82].e., arc structures: ‘label’ and ‘value’ pairs in our vocabulary.

1.5. DISCUSSION: 17

of delayed evaluation functionalities in programming languages, actual effi-
ciency gain from such a scheme may not be significant. This is because such
a scheme simply shifts the time and space consumed for copying to creating
and evaluating closures (which could be very costly compared to ‘defstruct’
operations to create copies which are often effectively optimized in many
commercial compilers). [Kogure, 1990] and [Emele, 1991] also use the lazy
evaluation idea to delay destructive changes. Both Kogure and Emele avoid
direct usage of delayed evaluation by using pointer operations. As Emele
suggests, Kogure’s method also requires a special dependency information
to be maintained which adds an overhead along with the cost for traversing
the dependency arcs. Also, a second traversal of the set of dependent nodes
is required for actually performing the copying. Emele proposes a method
of dereferencing by adding environment information that carries a sequence
of generation counters so that a specific generation node can be found by
traversing the forwarding links until a node with that generation is found.
While this allows undoing destructive changes cheaply by backtracking the
environment, every time a specific graph is to be accessed the whole graph
needs to be reconstructed by following the forwarding pointers sequentially
as specified in the environment list (except for the root node) to find the
node that shares the same generation number as the root node. Therefore,
similar to Pereira’s method, there will be Nlog(d) overhead associated with
constructing each graph every time a graph is accessed, where d is the num-
ber of nodes in the graph and N is the average depth of the environmental
deference chain. This would cause a problem if the algorithm is adopted for
a large-scale system in which result graphs are unified against other graphs
many times. Like Wroblewski’s method, all three lazy methods (i.e, God-
den’s, Kogure’s and Emele’s) suffer from the problem of Farly Copying as
defined in [Tomabechi, 1991]. This is because the copies that are incremen-
tally created up to the point of failure during the same top-level unification
are wasted. The problem is inherent in incremental copying scheme and
this problem is eliminated completely in [Karttunen, 1986]) and in the Q-D
method .32

% Lazy methods delay copying until a destructive change is to be performed so that
unnecessary copies are not created within a particular recursion into a unification function;
however, since each shared arc recursion is independent (non-deterministic), even if there
are no unnecessary copies created at all in one particular recursion, if there is a failure
in some other shared arc recursion (at some depth), then the copies that are created
by successful shared arc recursions up to the point of detection of failure will become
wasted. As long as the basic control structure remains incremental, this is inherent in
the incremental method. In other words, the problem is inherent in these incremental

18 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

There is one potential problem with the structure-sharing idea which is
shared by each of the schemes including the proposed method. This happens
when operations other than unification modify the graphs. (This is typical
when a parser cuts off a part of a graph for subsequent analysis®.) When
such operations are performed, structure-sharing of bottom (variable) nodes
may cause problems when a subgraph containing a bottom is shared by two
different graphs and these graphs are used as arguments of a unification
function (either as the part of the same input graph or as elements of dgl
and dg2). When a graph that shares a bottom node is not used in its
entirety, then the represented constraint postulated by the path leading to
the bottom node is no longer the same. Therefore, when such a graph
appears in the same unification along with some other graph with which
it DS shares the same bottom node, there will be a false F'S-Sharing. (If
the graph is used in its entirety this is not a problem since the two graph
paths would unify anyway.) This problem happens only when neither of
the two graphs that DS-Shares the same bottom node was unified against
some other graph before appearing in the same unification.®® (If either was
once unified, forwarding would have avoided this problem). The methods to
avoid such a problem can be 1) Aslong as these convergence of bottom nodes
are used for features that are not passed up during parsing, the problems
does not affect the result of parse in any way — which is the case with the
grammar at ATR and CMU. 2) A parser can be modified so that when it
modifies a graph other than through graph unification®, it creates copies of
the arc structures containing the bottom nodes. In the proposed method this
can be done by calling the copy function without structure-sharing before
a parser modifies a graph. 3) A parser can be modified so that it does not
cut off parts of graphs and use the graphs in their entirety (this should not
add complexity once structure-sharing is introduced to unification). Thus,
although the space and time reduction attained by structure-sharing can be
significant, DS-Sharing can cause problems unless it is used with a caution
(by making sure variable sharing does not cause erroneous sharing by using
these or some other methods).

methods by definition.

3*For example, many parsers cut off a subgraph of the path 0 for applying further rules
when a rule is accepted.

#5Such cases may happen when the same rule (such as V = V) augmented with a heavy
use of convergence in the bottom nodes is applied many times during a parse.

%6Such as when a rule is accepted and subgraph of 0 path is cut off.

1.6. CONCLUSION 19

1.6 Conclusion

The structure-sharing scheme introduced in this paper made the Q-D algo-
rithm (which was already significantly faster than Wroblewski’s non-destructive
unification) run significantly faster. The original gain of the Q-D algorithm
was due to the fact that it does not create any Over Copies or Early Copies
whereas incremental copying scheme inherently produces Early Copies (as
defined in [Tomabechi, 1991]) when a unification fails. The proposed scheme
makes the Q-D algorithm fully avoid Redundant Copies as well by only
copying the lowest nodes that need to be copied due to destructive changes
caused by successful unifications only. Since there will be no overhead as-
sociated with structure-sharing (except for returning two values instead of
one to pass up :changed information when recursion for copying returns),
the performance of the proposed structure-sharing scheme should not drop
even when the grammar size is significantly scaled up.3” With the demon-
strated speed of the algorithm, as well as the ability to handle cyclicity in the
graphs, and ease of switching between structure-sharing and non-structure
sharing, the algorithm could be a viable alternative to existing unification
algorithms used in current natural language systems.

ACKNOWLEDGMENTS

The author would like to thank Akira Kurematsu, Tsuyoshi Morimoto, Hi-
toshi Iida, Osamu Furuse, Masaaki Nagata, Toshiyuki Takezawa and other
members of ATR and Masaru Tomita, Jaime Carbonell, Alex Waibel and
David Evans at CMU. Kiyoshi Kogure of NTT (formally with ATR) im-
plemented the original versions of the Earley’s algorithm and Wroblewski’s
algorithm used in the experiments reported in this paper. The author also
had a number of useful discussions with Kogure concerning structure-sharing
and graph unification algorithms. A number of researchers and programmers
at CMU have contributed in implementing the original Tomita generalized
LR parser which now integrates the Q-D algorithm with structure-sharing.
Thanks are also due to Margalit Zabludowski for comments on the final ver-
sion of this paper and Madoka Higuchi for assistance in preparing the final
version of the paper.

3T ATR has already chosen the proposed structure-sharing scheme to be integrated into
their implementation of the Q-D algorithm already adopted for their large scale speech-
to-speech translation project.

20 CHAPTER 1. Q-D METHOD WITH STRUCTURE-SHARING

Implementation

The unification algorithms, Earley parser and the HPSG path equation to
graph converter programs are implemented in CommonLisp on a Symbolics
machine. A grammar compiler has also been implemented for the Tomita
generalized LR parser using CommonLisp to integrate Q-D unification with
structure-sharing into CMU’s Universal Parser (v8.4) architecture ([Tomita
and Carbonell, 1987]).

Bibliography

[Emele, 1991] Emele, M. “Unification with Lazy Non-Redundant Copying”. In Proceed-
ings of ACL-91, 1991.
[Godden, 1990] Godden, K. “Lazy Unification” In Proceedings of A CL-90, 1990.

[Karttunen, 1986] Karttunen, L. “D-PATR: A Development Environment for Unification-
Based Grammars”. In Proceedings of COLING-86, 1986. (Also, Report CSLI-86-61
Stanford University).

[Karttunen and Kay, 1985] Karttunen, L. and M. Kay. “Structure Sharing with Binary
Trees”. In Proceedings of ACL-85, 1985.

[Kasper, 1987] Kasper, R. “A Unification Method for Disjunctive Feature Descriptions”.
In Proceedings of ACL-87, 1987.

[Kogure, 1989] Kogure, K. 4 Study on Feature Structures and Unification. ATR Technical
Report. TR-1-0032, 1988.

[Kogure, 1990] Kogure, K. “Strategic Lazy Incremental Copy Graph Unification”. In Pro-
ceedings of COLING-90, 1990.

[Morimoto, et al, 1990] Morimoto, T., H.IIda, A. Kurematsu, K. Shikano, and T. Aizawa.
“Spoken Language Translation: Toward Realizing an Automatic Telephone Interpreta-
tion System”. In Proceedings of InfoJapan 1990, 1990.

[Pereira, 1985] Pereira, F. “A Structure-Sharing Representation for Unification-Based
Grammar Formalisms”. In Proceedings of ACL-85, 1985.

[Pollard and Sag, 1987] Pollaxrd, C. and L. Sag. Information-based Syntax and Semantics.
Vol 1, CSLI, 1987.

[Yoshimoto and Kogure, 1989] Yoshimoto, K. and K. Kogure. Japanese Sentence Analysis
by means of Phrase Structure Grammar. ATR Technical Report. TR-1-0049, 1989.

[Tomabechi, 1991] Tomabechi, H. “Quasi-Destructive Graph Unification”. In Proceedings
of ACL-91, 1991.

[Tomita and Carbonell, 1987] Tomita, M. and J. Carbonell. “The Universal Parser Archi-
tecture for Knowledge-Based Machine Translation”. In Proceedings of IJCAI87, 1987.

[Wroblewski, 1987] Wroblewski, D.“Nondestructive Graph Unification”. In Proceedings of
AAAI8T, 1987,

21

Chapter 2

R B — AL 2 O UERIE A B — 4

2.1 BEASFHWHECET 377 7 0B—{LofkEl

o “In the past several years, theoretical and computational linguists
working within a number of distinct research traditions have found

it useful to construct formal models of linguistic information” — Pol-
lard.

o WG OH—LEBRIbD~—2 & LA SFEHER. SIESEER-TFUG
(Kay, 1984), LFG (Bresnan and Kaplan, 1982), GPSG (Gazdar, etal,
1985), HPSG (Pollard and Sag, 1987).

o HVESRICH 2 7 7 Z2FIH L 2B15 BAEFEULEE - MONA-LISA (Tomabechi,
1990, 1991), GCPN (Tomabechi, 1991).

2.2 7o 7HE—bofESE - FIEE GETHEE)

o 75 7 B—{biZ—RiICA— — DR D 85% 25 95% < b\l
FEHEEL TV,

o {oT. B—bT7 A=) XADEFILRA—F—OEBLICE D 4 v 2
N RELBRTTH D,

22

2.3. @A77 7 BE— LT 2358 23

2.3 WA Z T 7 BE—ALFECAT 7 RRE
o ANIZ7 I 7%PBEL T AL AV,
o V377 7 a3k CFIFHE N S,
o VITHICA—TRHBT LHH b,
o WRD/ — FRERCTHBEC LpD 5,

o MW AT — G L T (FRa L LeT»EEET)

2.4 Pereira OFyE
e Structure-sharing 3 2 7,
o KV VIANDYT T LRERDY T 7 BEEFILN AT 5,

o oT, BROZI7R3F I VI r S 7 LEFEROFS L LTEX
b,

o Skelton & Environment ©F — X i,
o VO 0av—RVELbTRBIIGLCT I 7% X4 F3 v 7 icVEil+ 5,

o 1o T, log(d) DERBWAEF ——~y F3/ — F~DT 7 & R{BICHE
THb, TCTy dBT7I7HD7 —FoH,

R e e +
| skeleton | <== Pointer to the original dag structure

Hommmm e e et B +

| | rerouting | <== forwarding pointer

+ environment t--------------- +

! | arc-binding | <== new arcs to added to create result
o e +

Figure 2.1: Pereira’s Data Structure |

24

2.5

2.6

CHAPTER 2. BERIN—bs b UERERI B —fh~

Kartunnen Oy
FfEBUE L, (reversible unification) Dz Ho
B A ZE 274 5 HRTIC T v 4 KA R & — 7,

D-PATR (C-PATR): 2D T v A4, reDic/ — FiE&ER v —7, 3 5
D EDIEDOAR L v~

HB—{bolIitca ¥ —%VED,
—BlIOB—{LETHICE) P2y 7 BT 5,

FERCaC—2ET 30T, /- FADT 72 REOF —~—~v FiX
A\,

—75 BEERRO 7S 70w -7, B—tB0 7 I 7 0Bt —
N~y R B,

Wroblewski ®=Fik
EFTEEEL (incremental copying—) D% 2 Ho
FEEEI D B—{L (DPERIH—{b & IEPUERIN—{L DIRAE)
set-difference DEETHE % dagl & dag2 OMHHEH»HFTH 5o
= FT 7 RA~NDF—_—~v FlTH 0,

BAERKFIHE N T3, - Godden, Kogure, Emele, etc.

2.7. BRAFHZ 7 7B—kT7TA2 Y XADORE 25

NODE

o —————— +

] forward |

M +

| arc-list | ARC
LTy — + . +
| copy | | label I
S + L T Tyt +
[status |] value |
A + e Ty +

Figure 2.2: Wroblewski’s Data Structure

2.7 wEANHZ Z 7B TAT) X LHDIRE
e Hwn
- Wroblewski ® 7 A=) X 4@ 2 {50 FOENERERIES o
~DAGTCRALS DG %2HE S5, == —WWAEERZ 7 7% 5,
- Wk LT wT =) X4,

2.8 EEYbRE YD
o H—{L3RMIT 28D 5%,
(] @ﬂ@{lﬁﬂkig?C V‘o

o BETHEIIE e (H#IC Incremental Copying AR ClE, FHMD set-
difference % & 2 BERH 5,)

o MEWDY S 7 3HATE %,

2.9 H—{bokit
o 60 HLLEDE—~EBERL Tniko
o HM—ILARLHL 58 % O OBVEXFENC A %,

26 | CHAPTER 2. BB —{to» b UEREAE—{k~

2.10 #HETAOAN
o BRI ZBHRHERE TS, — ATV —DTulr—vay, —=Ur I,
o H—R—Valrva vREIVEECk D,

o H—(LICEY BRSO 7 5 %H 5 9 5 % AREROVERIC Db T b,

2.11 W HEo 7S 7 oAk
o HEZ S 7 @d—HA~DBECTH 5,
o BEEIZSTERIC A ER X N B

o REFHOYT V7 73 TE 51T

2.12 fRHR~DFHH
o I U —FE—LRIIFOIICHERT 5,
o Hi—{LARMZCTE 5 R b BHEAL,

o F— -~y FORVWEEIELHET

2.13 Over-Copying & Early-Copying

e Over Copying: —DODER/ — ¥ 2+ 3, Zo0HEE) —
PYELCTLE 50 — BEENE—LOBERIKEATIZ 7 7 21T 2 X5
BFETRON S,

o Barly Copying: B—{boRHEFERMRICEMAEHNE NS, B—{hoB
Ias b R DOFER, F Tk AERR O bIvd, — Wroblewski 0%k
LES CEICiEE,

Wroblewski @ Early Copying O%Z8: “The argument dags are copied
before unification started. If the unification fails then some of the
copying is wasted effort”. @ X % i Wroblewski DT E—{kss
PRtA L TH bR DFER E CItVEBl T M7 22 ¥ — 25 Over Copying 1€ %
Early Copying Kb BE A A>TLE 5,

2.14. #ETEERFE (INCREMENTAL COPYING) oAVERIFIE 27

2.14 HEFEERSE (Incremental Copying) OAE
FOFHIRE
o HIHTOERIC X % Farly Copying A fRHREE,

Shared Arc ~OFR L non-deterministic tH 2, LAB T, H5
Arc ~DE—{LDFRFDO U & DORRM L e GO L 2 BRI A v
70 Ay EacVEllE N e BT K IC A B o

o [FIERICHR2S non-deterministic TH % 75, Convergence % cycle % 2
7 7 CRO TG WMORBEONEIL LT 5 2Dk, £ P C/ER
ENTREEIAI ML L 2 FRE AT 22D, K4 v EA—R LT
AlEREOa I a=r—va vaBREE AR S,

o Chbld, Wroblewski, Kogure, Godden, Emele 4T 0 H{7RHE R
HERELTAT Y XA CARBHIC (Incremental DEE) B TH 5,

o oY 5K, ETEERTECR 1) Early Copying 28 & kv,
2) BERHOF—~N—~y FRKEV 3) BFUEREEL v & w5 RE
Bh b,
2.15 FEARPYTFEE
o NEZEMNERE - 79 7 0ERBNAR I v —N 7 v v 7 ICRIET 5o
o NUHEYZEEE 2% < (constant time) REfEIZEMICIT BIH T

o 77\ Tx V= FRA ¥ Z— TRARS v 2 —EORBEANE 5L TR
AT o

o v 7L DE—LBEBIT R L 2SR o BT,
o —DDREBNAICHTAbN AL TCORBENEERZ 7 a—N1rray 738
—BNEDIEFy v END,

216 L—TH5nWE I v +rovy—¢—Fl75+7—F

o unifyl BRI L 7c8rS dg2 » b dgl ~—RH 7+ vV —F DY v 7 36
oF (R

2.17. WEZEMENETITRC X % BA—{kH

2,17 RFfEIZEMERRER=EE I X B B—1 L)

unifyl(dagl,dag2) SHARED=(4,b)
| dagl NEW=(c)

a /b

S. 1
For each node with arc-a,
unify1(s, [12) o
dagl dag?

forward(n)
For cach node with arc-b,

wnify1([11, [)2
unl}I([]da[g%) ‘- dag2

 forward(n)

dagl, - foward®) dag2

., COmp-arc-
b “list(m)=(c) -
oot

forwa;d(n)

copy-comp-arc-list(dagl)
copy of dagl(n) dag forward(n)

forw;u'd(n). L
forward(n)

copy of dag1(n) 'dagl TN

2.17. ESEZEVEREEIRIRNC X 5 B—LA

2.17 IREZERESERI TR X 2 B— (LA

29

30 CHAPTER 2. WSEAUE—{b> b YRGB — (b~

2.18 EZUEREERIT L =) X A D E—{LIC BT B4
o FEREETD Do

o Set-difference DEEHBERZ—HML LT, T V775 7B TRY)
LB oAsTAhbN 5,

“CHLBLEL LB EERABE VL T OffrERT,
Q-D LTty unifyl 283 1 1 3[EFEEh, intersectarcs 281 7 4 7 [@l,
complementarcs 236 6 0 BIFFEILC\v»5%, Incremental Copying OTFpE
Tl&. intersectarcs 281 7 4 7[A], complementarcs 233 4 9 4 @I
BT THB, LadoT, 283 4AIOEEEEREINLC & KK Do

o WHRIIMINL 7D HVELN B DT, Over Copying, Early Copying &
bICIRHE B,

o FY PFAT T T DFECF AN~y FRE -, B —BNED B2
o

o L—TRY Ly T vy—pMERANEA LICERCHE L b,

2.19 77 7H—bikEBT 37— 2L - w3

e Feature-Structure Sharing: - 3XJEFDO I v v —THINS
5 &y RUEEONAE Lo E, A—07 7 7omt o ko
BRFEL 7 — F~fToTwa e,

e Data-Structure Sharing: — Pereira® 7A=Y XA b3 X5
Ay 7 — 25 Lo Structure-Sharing, ZOP FDRA S 75 7 BET
/= FEHEELTWBES,

2.20 /PpEOFE (Coling’90)

o Copy-dependency ¢PRIEI %2 2wy MiC (arc & mother) DT DY =
FEELTE L

o FARMICIT Wroblewski ® 7 A= U X 4 L[EEZ S, Complementarcs @
/J — ¥ HIRHEE¢31c, Copy-dependency ICVElE W3 _E) — T %
FEATRELNEN ORI EFERPRE AT CHEREL ¢ 5,
FRBRBEFCEE R LT & 7 — FOREET 5,

2.21. EMELE otk (ACL’91) 31

o Fllxi:
- /= X¥T 7RI —N—~y FALIKEEEDOY 775 7 %R
HRE,
— Copy-dependency &% / — FKEHEEEZ AL itk b, ~—
TRz TV —RBho ke h, SUREETH B,
o [UIREA :

- Early Copy BFEE&IC AL Ab AV, — ZNENOBPHIERE non-
deterministic TH 5 0T, HH#% BETWIGEbLETh, LHAERE XN
Aok TORBNATR T b lREERC A %,

— Copy-dependency FHREZMF L ATNLE AL A nkd, FORME,
%ﬁ@j‘_)\‘\“—'\ 7 Fiﬁ%fﬁﬂfgmﬁéo i 7C\ E;{ﬁ GC i)s‘%bmo
2.21 Emele oF# (ACL91)
o IRRFN7 + vV — FOFE (chronological dereferencing) o

o Wroblewski & [@lEE% Incremental Copying. /NET A=) XA X 5 &,
BT A b v,

o J—FEHDH O DT — 7 FHERL A v,

o BWERY I T7TREI - VEA— F RFEEOERT O A D ID FEL ID 28
HohFT, $HRIC dereference 4% ¢ & TYEEIA L5,

o Fligi:
~ZEEDODH o7/ — FETWABRERD) — FEchdthah s,
- T2 3 —EEEI AR,
o FHIREA
— Incremental Copying TH 5 ¥, Farly Copying RfBHRE &
o

- 75 7D7T 7 RAFI dereference chain #f#5 1L 77 7 #VEb R
BEh bRV, Pereira T A=) X4 LFREElog(d) DF —o—~w F
BhBY, EWEND/ — FKBT D FH —~—~ v ¥ dereference chain
DYEE ICHBI L ThsBo — Nlog(d)o

32 CHAPTER 2. BEEEIR—{tD b HERIEAIRE — (b~

- K ASGETR, RU 72 7 BSHERIAIE & VElE WA
7T 7 nERIEERRS T 7 LHE—LE¥ 5, /5T chronological deref-
erence ICE T 54 —N—~y FEBOTRKEL £ S EFHEI N, ERKE
kv Bbi b,

2.22 [RSEZENEHERITF R IC BT G 0ILE - AW A
=25

o IWZEHD) — F ot

o MEZNTH DR
- £T® Atomic / — ¥ (Atomic ZERAZE) .
-&ToLeaf / =¥ (B—AbPANC T 7 7 2ZEF L0 28R nwT
& BSHHE) o
- & TOTHRPEEETE D Complex / — Fo
;@L\/~Fﬁ7fv—F@ﬁ%%f%ok&%ﬁgﬁﬁ@ok&
HET o

2.23 [ESrEpERTE I B T A G0 - T
7\“1.\0)%%

o B—/bLEEH (unify0, unifyl %) — ZEBERE,

o HBEIM - LITOZEHE

~ BB EIR S DR BRHC, HREE L L ORI A TEL, Z
D7 —=FH L BZED/ — VOTEPERLSZT D7 5 7 %iK8T,

- b L2/ —FHE FROSTHRELEETH D, »2E2D/ —F
K7 7 — FYoft&fechdhild, #HE2ELSTAY ¥ F % unchanged
D7 T 7 EIIGET BERDNIEEMEVED :changed 7 5 7 L kic
A

- dLED —VHH L TFROSTHMEETHH, »DED/ —F
B7x7—FYOfFEETHhE, EHlEELTFY VF % ichanged ©
777 eHICET, BERDINEEREEVED :changed 07 9 7 & HHCK
To

2.24. ¥E&A{ (DATA-STRUCTURE SHARING) o—ooREE 33

2.24 #5EHLAEL (Data-Structure Sharing) o—o
D FERE R

o FHREFE L AT ALBWCH—LETRZ S 7 2EET 5 L IZIRS A \n,

o FlZiE, —BICA—¥—T CFG A— U BERIIT % &, X0 DX %E)D
B3,

o T DyE Bottom @ DS-Sharing 1 X Y585 % FS-Sharing 235433 ©
LBHVE L,

2.25 Bottom LB IC X 2EEOERE : (WL D2h0F
=61)

o H— LT AT) XLHCBEWTEED T ANOT—27 (FxiEX0) %
2= 5 E I DS-Share LAVvwa ¥ —%2F% 5, — Complex / — ¥
D Z0FEFERT L (Complex / — FOFIK bottom 235 22~ Livk
k)

e Bottom @ DS-Sharing 3 LA \ne TOFELRIEOTFEOEZNEFRLD +
L— FF 7 ¥ O Complex / — Fo Shating RE¥ T WwaHTE
50 P2 UEEKRCH—D7 v 7 —CRENDB LS5 AT T 7% DS-
Share L Tw3 &FhiE, Bottom ® DS-Sharing #®, X0 757 »
PIDE QNS i i RN

o N—PF—NTI7 7YV EDOERY S, BE—1LIE monotonic ZENVET
% b, Bottom @ DS-Sharing 23[HEE % ¢ 3 o 13158 o BFHeIN o E A
ZERTOTD %, DF VE~LDOERD 7T 7 Db OB AN S
TOBEHRI VDB WSEHEFREC LTWERLTH B,

o MJRIC X 5T, K& %4 Bottom @ DS-Sharing R T&ECd ~ v FolEsf
ELTEBoTuhANWCEBDRDH D, T5 ok IETERE L ERIC
R RIEE v,

2.26 fEEG
o H—{LOFHRRHCERVERE DI — N —~ v F23A Lo BHI»HEE,

e Farly Copying, Over Copying i fiEiH,

CHAPTER 2. WSFE—b2s b UEREERI B — b~

o TATY XALEMALLBRICA—TLYI 2V F I vy —a3 4 B,
o 77w RGH HEEVERER D A — N~y FO A &I (DS-Sharing)

o H—{LRHEI O 4 UWCHEBBINE 2 4 v 733720 T, o &
A RIBAETRE <« o T, N—¥R27 75 72PN E 358
CHSTINTE %,

o SERA-CIEEIEILAE© Wroblewski @ 2 fZ2> b 3 4%, HEdIEEC 4 fZ 0
b b EREOFNBHRE TH 2 C & REERI N,

o T, B—boRBoEER L3 iE E235 & E Barly Copying 234E
HIICHETE T & 7% \» Incremental Copying #FFH L 2FHE L OZERKE
%57, —RICSHED R r— 38 E25niE b5 318 ' Bk ok
SR bDERBN G,

o FEAW I XM S A ICIEFIMEWIBET D B 13 37CH B 23, Bid k23 bFEE
BUE, WHT7AT) XADERBITA->TVAVN, XL, BElae
ity BIUHE~OER T v 22T 722 ICX % v v 7 ORREREZ
HEDVEZED, FL— N F 7855,

o VIw—auv R T—FEIMZ AL oT, NESKEPELTCOD
ATOM =7 v 71— [TE»rND X 5% COMPLEX @75 7 oA
HEEIC A Do

